Skip to content

Commit 02d547e

Browse files
minor changes
1 parent 3d4cef2 commit 02d547e

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

CouchbaseVectorSearchDemo/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ var collection = vectorStore.GetCollection<string, Glossary>(
121121
);
122122
```
123123

124-
The `CouchbaseQueryCollectionOptions` works with both Hyperscale and Composite indexes - simply specify the appropriate index name. For Search Vector indexes, use `CouchbaseSearchCollection` with `CouchbaseSearchCollectionOptions` instead.
124+
The `CouchbaseQueryCollectionOptions` works with both Hyperscale and Composite indexes. For Search Vector indexes, use `CouchbaseSearchCollection` with `CouchbaseSearchCollectionOptions` instead.
125125

126126
**Automatic Embedding Generation** - The connector integrates with Semantic Kernel's `IEmbeddingGenerator` interface to automatically generate embeddings from text. When you provide an embedding generator (in this case, OpenAI's `text-embedding-3-small`), the text is automatically converted to vectors:
127127

@@ -250,7 +250,7 @@ Couchbase offers three types of vector indexes optimized for different use cases
250250
- Designed to scale to billions of vectors with low memory footprint
251251
- Optimized for high-performance concurrent operations
252252
- Ideal for: Large-scale semantic search, recommendations, content discovery
253-
- **Creation**: Using SQL++ `CREATE VECTOR INDEX` as shown in Step 3
253+
- **Creation**: Using SQL++ `CREATE VECTOR INDEX` as shown in the Hyperscale Index Creation section
254254

255255
**2. Composite Vector Indexes**
256256
- Uses SQL++ queries via `CouchbaseQueryCollection`

0 commit comments

Comments
 (0)