You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# title and description do not need to be added to markdown, start with H2 (##)
5
-
title: Build Vector Search with Couchbase .NET Semantic Kernel Connector and OpenAI
6
+
title: Build Vector Search with Semantic Kernel, Couchbase Hyperscale and Composite Vector Index
6
7
short_title: Vector Search with Semantic Kernel
7
8
description:
8
-
- Build a semantic search application using Couchbase Vector Search with Semantic Kernel.
9
+
- Build a semantic search application using Semantic Kernel with Couchbase Hyperscale and Composite Vector Index.
9
10
- Learn to use the Couchbase .NET Vector Store Connector for Microsoft Semantic Kernel.
10
11
- Discover how to generate embeddings with OpenAI and store them in Couchbase.
11
12
- Perform vector similarity searches with filtering using SQL++ and ANN_DISTANCE.
@@ -19,27 +20,31 @@ tags:
19
20
- Semantic Kernel
20
21
- OpenAI
21
22
- Artificial Intelligence
23
+
- Hyperscale Vector Index
24
+
- Composite Vector Index
22
25
sdk_language:
23
26
- csharp
24
27
length: 30 Mins
25
28
---
26
29
27
-
## Repository Links
28
-
29
-
-**Connector Repository**: [couchbase-semantic-kernel](https://github.com/Couchbase-Ecosystem/couchbase-semantic-kernel) - The official Couchbase .NET Vector Store Connector for Microsoft Semantic Kernel
30
-
-**This Example**: [CouchbaseVectorSearchDemo](https://github.com/couchbase-examples/couchbase-semantic-kernel-quickstart/tree/main/CouchbaseVectorSearchDemo) - Complete working example demonstrating vector search with Couchbase
31
-
32
30
## Introduction
33
31
34
32
This demo showcases the **Semantic Kernel Couchbase connector** - a .NET library that bridges Microsoft's Semantic Kernel framework with Couchbase's vector search capabilities. The connector provides a seamless integration that allows developers to build AI-powered applications using familiar Semantic Kernel abstractions while leveraging Couchbase's vector indexing for high-performance semantic search.
35
33
34
+
35
+
36
36
The connector supports three index types:
37
37
-**Hyperscale Vector Index** - for pure vector search at scale ← *Used in this demo*
38
38
-**Composite Vector Index** - for vector search with heavy scalar filtering
39
39
-**Search Vector Index** (using Search service) - for hybrid text + semantic search
40
40
41
41
This makes the connector ideal for RAG (Retrieval-Augmented Generation) applications, semantic search engines, hybrid search, and recommendation systems.
42
42
43
+
### Repository Links
44
+
45
+
-**Connector Repository**: [couchbase-semantic-kernel](https://github.com/Couchbase-Ecosystem/couchbase-semantic-kernel) - The official Couchbase .NET Vector Store Connector for Microsoft Semantic Kernel
46
+
-**This Example**: [CouchbaseVectorSearchDemo](https://github.com/couchbase-examples/couchbase-semantic-kernel-quickstart/tree/main/CouchbaseVectorSearchDemo) - Complete working example demonstrating vector search with Couchbase
0 commit comments