Skip to content

Commit cca9261

Browse files
Merge branch 'main' into main
2 parents a486cf0 + c22a2ba commit cca9261

File tree

34 files changed

+11916
-3740
lines changed

34 files changed

+11916
-3740
lines changed

test/test-markdown-frontmatter.js

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ const chalk = require('chalk')
66
// accepted data field values
77
const sdk_languages = ['nodejs', 'scala', 'python', 'swift', 'csharp', 'objective-c', 'android-java', 'any', 'java', 'kotlin', 'dart', 'golang', 'c++']
88

9-
const tags = ['Ottoman', 'Ktor', 'REST API', 'Express', 'Flask', 'TLS', 'Configuration', 'Next.js', 'iOS', 'Xcode', '.NET', 'Xamarin', 'Authentication', 'OpenID', 'Keycloak', 'Android', 'P2P', 'UIKit', 'Installation', 'Spring Boot', 'Spring Data', 'Transactions', 'SQL++ (N1QL)', 'Optimization', 'Community Edition', 'Docker', 'Data Modeling', 'Metadata', 'Best Practices', 'Data Ingestion', 'Kafka', 'Support', 'Customer', 'Prometheus', 'Monitoring', 'Observability', 'Metrics', 'Query Workbench', 'ASP.NET', 'linq', 'DBaaS', 'App Services', 'Flutter', 'Gin Gonic', 'FastAPI', 'LangChain', "OpenAI", "Streamlit", 'Google Gemini', 'Nvidia NIM', 'LLama3', 'AWS', 'Artificial Intelligence', 'Cohere', 'Jina AI', 'Mistral AI', 'Ragas', 'Haystack', 'LangGraph', 'Amazon Bedrock', 'CrewAI', 'PydanticAI', 'C++', 'C++ SDK', 'smolagents', 'Ag2', 'Autogen', 'Couchbase Edge Server', 'Deepseek', 'OpenRouter', 'mastra', 'Looker Studio', 'Google Data Studio', 'Connector', 'Couchbase Columnar', 'TAVs', 'Custom Queries', 'Data API', 'GraphQL']
9+
const tags = ['Ottoman', 'Ktor', 'REST API', 'Express', 'Flask', 'TLS', 'Configuration', 'Next.js', 'iOS', 'Xcode', '.NET', 'Xamarin', 'Authentication', 'OpenID', 'Keycloak', 'Android', 'P2P', 'UIKit', 'Installation', 'Spring Boot', 'Spring Data', 'Transactions', 'SQL++ (N1QL)', 'Optimization', 'Community Edition', 'Docker', 'Data Modeling', 'Metadata', 'Best Practices', 'Data Ingestion', 'Kafka', 'Support', 'Customer', 'Prometheus', 'Monitoring', 'Observability', 'Metrics', 'Query Workbench', 'ASP.NET', 'linq', 'DBaaS', 'App Services', 'Flutter', 'Gin Gonic', 'FastAPI', 'LangChain', "OpenAI", "Streamlit", 'Google Gemini', 'Nvidia NIM', 'LLama3', 'AWS', 'Artificial Intelligence', 'Cohere', 'Jina AI', 'Mistral AI', 'Ragas', 'Haystack', 'LangGraph', 'Amazon Bedrock', 'CrewAI', 'PydanticAI', 'C++', 'C++ SDK', 'smolagents', 'Ag2', 'Autogen', 'Couchbase Edge Server', 'Deepseek', 'OpenRouter', 'mastra', 'Looker Studio', 'Google Data Studio', 'Connector', 'Couchbase Columnar', 'TAVs', 'Custom Queries', 'Data API', 'FTS', 'GSI', 'Hugging Face', 'LlamaIndex', 'GraphQL']
1010

1111
const technologies = ['connectors', 'kv', 'query', 'capella', 'server', 'index', 'mobile', 'fts', 'sync gateway', 'eventing', 'analytics', 'udf', 'vector search', 'react', 'edge-server', 'app-services']
1212

tutorial/markdown/generated/vector-search-cookbook/CouchbaseStorage_Demo.md

Lines changed: 0 additions & 982 deletions
This file was deleted.

tutorial/markdown/generated/vector-search-cookbook/RAG_with_Couchbase_and_CrewAI.md

Lines changed: 0 additions & 1425 deletions
This file was deleted.

tutorial/markdown/generated/vector-search-cookbook/agentchat_RetrieveChat_couchbase.md renamed to tutorial/markdown/generated/vector-search-cookbook/ag2-agentchat_RetrieveChat_couchbase.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@ filter: sdk
1212
technology:
1313
- vector search
1414
tags:
15+
- FTS
1516
- Artificial Intelligence
1617
- Autogen
1718
- Ag2

tutorial/markdown/generated/vector-search-cookbook/Bedrock_Agents_Custom_Control.md renamed to tutorial/markdown/generated/vector-search-cookbook/awsbedrock-agents-custom-control-approach-Bedrock_Agents_Custom_Control.md

File renamed without changes.

tutorial/markdown/generated/vector-search-cookbook/Bedrock_Agents_Lambda.md renamed to tutorial/markdown/generated/vector-search-cookbook/awsbedrock-agents-lambda-approach-Bedrock_Agents_Lambda.md

Lines changed: 2 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -1879,31 +1879,8 @@ logger.info("--- Lambda Deployment Complete --- ")
18791879
2025-06-09 13:40:23,605 - INFO - Running make command: make -f /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/lambda_functions/Makefile clean package (in /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/lambda_functions)
18801880
2025-06-09 13:40:50,341 - INFO - Make command completed successfully.
18811881
2025-06-09 13:40:50,343 - INFO - Moving and renaming /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/lambda_functions/lambda_package.zip to /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip
1882-
2025-06-09 13:40:50,351 - INFO - Zip file ready: /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip
1883-
2025-06-09 13:40:50,362 - INFO - Cleaning up temporary script: /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/lambda_functions/lambda_function.py
1884-
2025-06-09 13:40:50,362 - INFO - Lambda function packaged at: /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip
1885-
2025-06-09 13:40:50,363 - INFO - Creating/Updating Lambda function 'bedrock_agent_search_format_exp'...
1886-
2025-06-09 13:40:50,363 - INFO - Deploying Lambda function bedrock_agent_search_format_exp from /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip...
1887-
2025-06-09 13:40:50,371 - INFO - Found credentials in environment variables.
1888-
2025-06-09 13:40:50,516 - INFO - Zip file size: 50.91 MB
1889-
2025-06-09 13:40:50,516 - INFO - Package size (50.91 MB) requires S3 deployment.
1890-
2025-06-09 13:40:50,517 - INFO - Preparing to upload /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip to S3 in region us-east-1...
1891-
2025-06-09 13:40:51,552 - INFO - Generated unique S3 bucket name: lambda-deployment-598307997273-1749456651
1892-
2025-06-09 13:40:52,277 - INFO - Creating S3 bucket: lambda-deployment-598307997273-1749456651...
1893-
2025-06-09 13:40:52,666 - INFO - Created S3 bucket: lambda-deployment-598307997273-1749456651. Waiting for availability...
1894-
2025-06-09 13:40:52,929 - INFO - Bucket lambda-deployment-598307997273-1749456651 is available.
1895-
2025-06-09 13:40:52,929 - INFO - Uploading /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip to s3://lambda-deployment-598307997273-1749456651/lambda/bedrock_agent_search_and_format.zip-0b1fc73a...
1896-
2025-06-09 13:41:03,991 - INFO - Successfully uploaded to s3://lambda-deployment-598307997273-1749456651/lambda/bedrock_agent_search_and_format.zip-0b1fc73a
1897-
2025-06-09 13:41:03,993 - INFO - Creating function 'bedrock_agent_search_format_exp' (attempt 1/3)...
1898-
2025-06-09 13:41:06,690 - INFO - Successfully created function 'bedrock_agent_search_format_exp' with ARN: arn:aws:lambda:us-east-1:598307997273:function:bedrock_agent_search_format_exp
1899-
2025-06-09 13:41:11,693 - INFO - Adding basic invoke permission (AllowBedrockInvokeBasic-bedrock_agent_search_format_exp) to bedrock_agent_search_format_exp...
1900-
2025-06-09 13:41:12,007 - INFO - Successfully added basic invoke permission AllowBedrockInvokeBasic-bedrock_agent_search_format_exp.
1901-
2025-06-09 13:41:12,007 - INFO - Waiting for function 'bedrock_agent_search_format_exp' to become active...
1902-
2025-06-09 13:41:12,306 - INFO - Function 'bedrock_agent_search_format_exp' is active.
1903-
2025-06-09 13:41:12,308 - INFO - Search/Format Lambda Deployed: arn:aws:lambda:us-east-1:598307997273:function:bedrock_agent_search_format_exp
1904-
2025-06-09 13:41:12,308 - INFO - Cleaning up deployment zip file...
1905-
2025-06-09 13:41:12,310 - INFO - Removed zip file: /Users/kaustavghosh/Desktop/vector-search-cookbook/awsbedrock-agents/lambda-approach/bedrock_agent_search_and_format.zip
1906-
2025-06-09 13:41:12,311 - INFO - --- Lambda Deployment Complete ---
1882+
1883+
... (output truncated for brevity)
19071884

19081885

19091886
### 4.6 Agent Setup

tutorial/markdown/generated/vector-search-cookbook/RAG_with_Couchbase_and_Bedrock.md renamed to tutorial/markdown/generated/vector-search-cookbook/awsbedrock-fts-RAG_with_Couchbase_and_Bedrock.md

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,18 @@
11
---
22
# frontmatter
3-
path: "/tutorial-aws-bedrock-couchbase-rag"
4-
title: Retrieval-Augmented Generation (RAG) with Couchbase and Amazon Bedrock
5-
short_title: RAG with Couchbase and Amazon Bedrock
3+
path: "/tutorial-aws-bedrock-couchbase-rag-with-fts"
4+
title: Retrieval-Augmented Generation (RAG) with Couchbase and Amazon Bedrock using FTS service
5+
short_title: RAG with Couchbase and Amazon Bedrock using FTS service
66
description:
7-
- Learn how to build a semantic search engine using Couchbase and Amazon Bedrock.
7+
- Learn how to build a semantic search engine using Couchbase and Amazon Bedrock using FTS service.
88
- This tutorial demonstrates how to integrate Couchbase's vector search capabilities with Amazon Bedrock's Titan embeddings and Claude language model.
99
- You'll understand how to perform Retrieval-Augmented Generation (RAG) using LangChain and Couchbase.
1010
content_type: tutorial
1111
filter: sdk
1212
technology:
1313
- vector search
1414
tags:
15+
- FTS
1516
- Artificial Intelligence
1617
- LangChain
1718
- Amazon Bedrock
@@ -24,15 +25,15 @@ length: 60 Mins
2425
<!--- *** WARNING ***: Autogenerated markdown file from jupyter notebook. ***DO NOT EDIT THIS FILE***. Changes should be made to the original notebook file. See commit message for source repo. -->
2526

2627

27-
[View Source](https://github.com/couchbase-examples/vector-search-cookbook/tree/main/awsbedrock/RAG_with_Couchbase_and_Bedrock.ipynb)
28+
[View Source](https://github.com/couchbase-examples/vector-search-cookbook/tree/main/awsbedrock/fts/RAG_with_Couchbase_and_Bedrock.ipynb)
2829

2930
# Introduction
3031

31-
In this guide, we will walk you through building a powerful semantic search engine using Couchbase as the backend database and [Amazon Bedrock](https://aws.amazon.com/bedrock/) as both the embedding and language model provider. Semantic search goes beyond simple keyword matching by understanding the context and meaning behind the words in a query, making it an essential tool for applications that require intelligent information retrieval. This tutorial is designed to be beginner-friendly, with clear, step-by-step instructions that will equip you with the knowledge to create a fully functional semantic search system from scratch.
32+
In this guide, we will walk you through building a powerful semantic search engine using Couchbase as the backend database and [Amazon Bedrock](https://aws.amazon.com/bedrock/) as both the embedding and language model provider. Semantic search goes beyond simple keyword matching by understanding the context and meaning behind the words in a query, making it an essential tool for applications that require intelligent information retrieval. This tutorial is designed to be beginner-friendly, with clear, step-by-step instructions that will equip you with the knowledge to create a fully functional semantic search system using the FTS service from scratch. Alternatively if you want to perform semantic search using the GSI index, please take a look at [this.](https://developer.couchbase.com/tutorial-aws-bedrock-couchbase-rag-with-global-secondary-index/)
3233

3334
# How to run this tutorial
3435

35-
This tutorial is available as a Jupyter Notebook (`.ipynb` file) that you can run interactively. You can access the original notebook [here](https://github.com/couchbase-examples/vector-search-cookbook/blob/main/awsbedrock/RAG_with_Couchbase_and_Bedrock.ipynb).
36+
This tutorial is available as a Jupyter Notebook (`.ipynb` file) that you can run interactively. You can access the original notebook [here](https://github.com/couchbase-examples/vector-search-cookbook/blob/main/awsbedrock/fts/RAG_with_Couchbase_and_Bedrock.ipynb).
3637

3738
You can either download the notebook file and run it on [Google Colab](https://colab.research.google.com/) or run it on your system by setting up the Python environment.
3839

0 commit comments

Comments
 (0)