You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
where <math><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math><ins>,</ins> and
202
+
<math><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>j</mi><mo>)</mo></math> is defined in Table 124.
203
+
</p>
204
+
</li>
205
+
<li><p>(4.2) — <del>The following computations are applied to the elements of the <math><mi>V</mi></math> sequence:</del>
206
+
<ins>The next output <math><msup><mi>X</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msup></math> is computed from the elements of
207
+
<math><msup><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msup></math> as follows. For <math><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>-</mo><mn>1</mn><mo>,</mo></math></ins></p>
<li><p>(4.2.1) — mullo(<math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>w</mi></math>) is the low half of the modular multiplication of
217
+
<math><mi>a</mi></math> and <math><mi>b</mi></math>: <math><mo>(</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>)</mo><mo>mod</mo><msup><mn>2</mn><mi>w</mi></msup></math>,</p></li>
218
+
<li><p>(4.2.2) — mulhi(<math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>w</mi></math>) is the high half of the modular multiplication of
219
+
<math><mi>a</mi></math> and <math><mi>b</mi></math>: <math><mo>(</mo><mo>⌊</mo><mo>(</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>)</mo><mo>/</mo><msup><mn>2</mn><mi>w</mi></msup><mo>⌋</mo><mo>)</mo></math>,</p></li>
220
+
<li><p>(4.2.3) —
221
+
<del><math><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></math> is the index in the sequences,</del>
222
+
<ins><math><msubsup><mi>K</mi><mi>k</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup></math> is the
223
+
<math><msup><mi>k</mi><mtext>th</mtext></msup></math> round key for round <math><mi>q</mi></math>,
<li><p>(4.2.4) — <del><math><mi>q</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi><mo>−</mo><mn>1</mn></math> is the index of the round,</del>
226
+
<ins><math><msub><mi>K</mi><mi>k</mi></msub></math> is the <math><msup><mi>k</mi><mtext>th</mtext></msup></math> element of the key sequence
227
+
<math><mi>K</mi></math>,</ins></p></li>
228
+
<li><p><del>(4.2.5) — <math><msubsup><mistyle="font-style: italic">key</mi><mi>k</mi><mi>q</mi></msubsup></math> is the
229
+
<math><msup><mi>k</mi><mtext>th</mtext></msup></math> round key for round <math><mi>q</mi></math>,
<li><p><del>(4.2.6) — <math><msub><mi>K</mi><mi>k</mi></msub></math> are the elements of the key sequence <math><mi>K</mi></math>,</del></p></li>
232
+
<li><p>(4.2.7) — <math><msub><mi>M</mi><mi>k</mi></msub></math> is <tt>multipliers[<math><mi>k</mi></math>]</tt>, and</p></li>
233
+
<li><p>(4.2.8) — <math><msub><mi>C</mi><mi>k</mi></msub></math> is <tt>round_consts[<math><mi>k</mi></math>]</tt>.</p></li>
0 commit comments