|
13 | 13 |
|
14 | 14 | <discussion> |
15 | 15 | <p> |
16 | | -The wording for `vector_two_norm` <sref ref="[linalg.algs.blas1.nrm2]"/> and |
17 | | -`matrix_frob_norm` <sref ref="[linalg.algs.blas1.matfrobnorm]"/> has two issues. |
| 16 | +The Returns clauses `vector_two_norm` <sref ref="[linalg.algs.blas1.nrm2]"/> and |
| 17 | +`matrix_frob_norm` <sref ref="[linalg.algs.blas1.matfrobnorm]"/> say that the |
| 18 | +functions return the "square root" of the sum of squares of the initial value and |
| 19 | +the absolute values of the elements of the input `mdspan`. However, nowhere in |
| 20 | +<sref ref="[linalg]"/> explains how to compute a square root. |
18 | 21 | </p> |
19 | 22 | <ol> |
20 | | -<li><p>Their <i>Returns</i> clauses say that the functions return the "square |
21 | | -root" of the sum of squares of the initial value and the absolute |
22 | | -values of the elements of the input `mdspan`. However, nowhere in |
23 | | -<sref ref="[linalg]"/> explains how to compute a square root.</p> |
24 | | -<ol style="list-style-type: none"> |
25 | | -<li><p>1.a. The input `mdspan`'s `value_type` and the initial value type |
26 | | -are not constrained in a way that would ensure that calling |
27 | | -`std::sqrt` on this expression would be well-formed.</p></li> |
28 | | -<li><p>1.b. There is no provision to find `sqrt` via argument-dependent |
29 | | -lookup, even though <sref ref="[linalg]"/> has provisions to find `abs`, `conj`, |
30 | | -`real`, and `imag` via argument-dependent lookup. There is no |
31 | | -"`sqrt-if-needed`" analog to `abs-if-needed`, `conj-if-needed`, |
32 | | -`real-if-needed`, and `imag-if-needed`.</p></li> |
33 | | -</ol> |
34 | | -</li> |
35 | | -<li><p>The overloads that take an initial value parameter `Scalar init` |
36 | | -return `Scalar`.</p> |
37 | | -<ol style="list-style-type: none"> |
38 | | -<li><p>2.a. This may silently lose information if the function uses |
39 | | -`std::sqrt` to compute square roots. For example, if `Scalar` and the |
40 | | -input `mdspan`'s `value_type` are both `int`, the square root computed |
41 | | -via `std::sqrt` would return `double`. However, `vector_two_norm` and |
42 | | -`matrix_frob_norm` returning `Scalar` would force a rounding |
43 | | -conversion back to `int`.</p></li> |
44 | | -</ol> |
45 | | -</li> |
| 23 | +<li><p>The input `mdspan`'s `value_type` and the initial value type are |
| 24 | +not constrained in a way that would ensure that calling `std::sqrt` on |
| 25 | +this expression would be well-formed.</p></li> |
| 26 | +<li><p>There is no provision to find `sqrt` via argument-dependent lookup, |
| 27 | +even though [linalg] has provisions to find `abs`, `conj`, `real`, and |
| 28 | +`imag` via argument-dependent lookup. There is no "`sqrt-if-needed`" |
| 29 | +analog to `abs-if-needed`, `conj-if-needed`, `real-if-needed`, and |
| 30 | +`imag-if-needed`.</p></li> |
46 | 31 | </ol> |
47 | 32 | <p> |
48 | | -<b>Suggested fix:</b> |
49 | | -<p/> |
50 | | -The easiest fix for both issues is just to <i>Constrain</i> both `Scalar` and |
| 33 | +The easiest fix for both issues is just to Constrain both `Scalar` and |
51 | 34 | the input `mdspan`'s `value_type` to be floating-point numbers or |
52 | 35 | specializations of `std::complex` for these two functions. This |
53 | | -presumes that relaxing this <i>Constraint</i> and fixing the above two issues |
| 36 | +presumes that relaxing this Constraint and fixing the above two issues |
54 | 37 | later would be a non-breaking change. If that is <em>not</em> the case, then |
55 | 38 | I would suggest removing the two functions entirely. |
56 | 39 | </p> |
57 | 40 | </discussion> |
58 | 41 |
|
59 | 42 | <resolution> |
| 43 | +<p> |
| 44 | +This wording is relative to <paper num="N5014"/>. |
| 45 | +</p> |
| 46 | + |
| 47 | +<blockquote class="note"> |
| 48 | +<p> |
| 49 | +[<i>Drafting note:</i> As a drive-by fix the proposed wording adds a missing closing parentheses in |
| 50 | +<sref ref="[linalg.algs.blas1.nrm2]"/> p2.] |
| 51 | +</p> |
| 52 | +</blockquote> |
| 53 | + |
| 54 | +<ol> |
| 55 | + |
| 56 | +<li><p>Modify <sref ref="[linalg.algs.blas1.nrm2]"/> as indicated:</p> |
| 57 | + |
| 58 | +<blockquote> |
| 59 | +<pre> |
| 60 | +template<<i>in-vector</i> InVec, class Scalar> |
| 61 | + Scalar vector_two_norm(InVec v, Scalar init); |
| 62 | +template<class ExecutionPolicy, <i>in-vector</i> InVec, class Scalar> |
| 63 | + Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init); |
| 64 | +</pre> |
| 65 | +<blockquote> |
| 66 | +<p> |
| 67 | +-1- [<i>Note 1</i>: […] — <i>end note</i>] |
| 68 | +<p/> |
| 69 | +<ins>-?- <i>Constraints</i>: `InVec::value_type` and `Scalar` are either a floating-point type, or |
| 70 | +a specialization of `complex`.</ins> |
| 71 | +<p/> |
| 72 | +-2- <i>Mandates</i>: Let `a` be <tt><i>abs-if-needed</i>(declval<typename InVec::value_type>())</tt>. |
| 73 | +Then, <tt>decltype(init + a * a<ins>)</ins></tt> is convertible to `Scalar`. |
| 74 | +<p/> |
| 75 | +-3- <i>Returns</i>: The square root of the sum of the square of `init` and the squares of the |
| 76 | +absolute values of the elements of `v`. |
| 77 | +<p/> |
| 78 | +[<i>Note 2</i>: For `init` equal to zero, this is the Euclidean norm (also called 2-norm) of the vector |
| 79 | +`v`. — <i>end note</i>] |
| 80 | +<p/> |
| 81 | +-4- <i>Remarks</i>: If <del>`InVec::value_type`, and `Scalar` are all floating-point types or specializations of `complex`, |
| 82 | +and if</del> `Scalar` has higher precision than `InVec::value_type`, then intermediate terms in the sum use |
| 83 | +`Scalar`'s precision or greater. |
| 84 | +<p/> |
| 85 | +[<i>Note 3</i>: An implementation of this function for floating-point types `T` can use the `scaled_sum_of_squares` |
| 86 | +result `from vector_sum_of_squares(x, {.scaling_factor=1.0, .scaled_sum_of_squares=init})`. — <i>end note</i>] |
| 87 | +</p> |
| 88 | +</blockquote> |
| 89 | +</blockquote> |
| 90 | + |
| 91 | +</li> |
| 92 | + |
| 93 | +<li><p>Modify <sref ref="[linalg.algs.blas1.matfrobnorm]"/> as indicated:</p> |
| 94 | + |
| 95 | +<blockquote> |
| 96 | +<pre> |
| 97 | +template<<i>in-matrix</i> InMat, class Scalar> |
| 98 | + Scalar matrix_frob_norm(InMat A, Scalar init); |
| 99 | +template<class ExecutionPolicy, <i>in-matrix</i> InMat, class Scalar> |
| 100 | + Scalar matrix_frob_norm(ExecutionPolicy&& exec, InMat A, Scalar init); |
| 101 | +</pre> |
| 102 | +<blockquote> |
| 103 | +<p> |
| 104 | +<ins>-?- <i>Constraints</i>: `InVec::value_type` and `Scalar` are either a floating-point type, or |
| 105 | +a specialization of `complex`.</ins> |
| 106 | +<p/> |
| 107 | +-2- <i>Mandates</i>: Let `a` be <tt><i>abs-if-needed</i>(declval<typename InMat::value_type>())</tt>. |
| 108 | +Then, <tt>decltype(init + a * a)</tt> is convertible to `Scalar`. |
| 109 | +<p/> |
| 110 | +-3- <i>Returns</i>: The square root of the sum of squares of `init` and the absolute values |
| 111 | +of the elements of `A`. |
| 112 | +<p/> |
| 113 | +[<i>Note 2</i>: For `init` equal to zero, this is the Frobenius norm of the matrix `A`. — <i>end note</i>] |
| 114 | +<p/> |
| 115 | +-4- <i>Remarks</i>: If <del>`InMat::value_type` and `Scalar` are all floating-point types or specializations of |
| 116 | +`complex`, and if</del> `Scalar` has higher precision than `InMat::value_type`, then intermediate terms in the |
| 117 | +sum use `Scalar`'s precision or greater. |
| 118 | +</p> |
| 119 | +<blockquote><pre> |
| 120 | +</pre></blockquote> |
| 121 | +</blockquote> |
| 122 | +</blockquote> |
| 123 | + |
| 124 | +</li> |
| 125 | + |
| 126 | +</ol> |
60 | 127 | </resolution> |
61 | 128 |
|
62 | 129 | </issue> |
0 commit comments