|
1444 | 1444 | \pnum
|
1445 | 1445 | Throughout this subclause,
|
1446 | 1446 | the operators
|
1447 |
| -\bitand, \bitor, and \xor |
| 1447 | +\bitand, \bitor, and \xor{} |
1448 | 1448 | denote the respective conventional bitwise operations.
|
1449 | 1449 | Further:
|
1450 | 1450 |
|
|
2883 | 2883 | \item
|
2884 | 2884 | With $\alpha = a \cdot (Y \bitand 1)$,
|
2885 | 2885 | set $X_i$ to
|
2886 |
| - $X_{i+m-n} \, \xor \, (Y \rightshift 1) \, \xor \, \alpha$. |
| 2886 | + $X_{i+m-n} \xor (Y \rightshift 1) \xor \alpha$. |
2887 | 2887 | \end{enumeratea}
|
2888 | 2888 | The sequence $X$ is initialized
|
2889 | 2889 | with the help of an initialization multiplier $f$.
|
|
2898 | 2898 | \item
|
2899 | 2899 | Let $z_1 = X_i \xor \bigl(( X_i \rightshift u ) \bitand d\bigr)$.
|
2900 | 2900 | \item
|
2901 |
| - Let $z_2 = z_1 \xor \bigl( (z_1 \leftshift{w} \, s) \bitand b \bigr)$. |
| 2901 | + Let $z_2 = z_1 \xor \bigl( (z_1 \leftshift{w} s) \bitand b \bigr)$. |
2902 | 2902 | \item
|
2903 |
| - Let $z_3 = z_2 \xor \bigl( (z_2 \leftshift{w} \, t) \bitand c \bigr)$. |
| 2903 | + Let $z_3 = z_2 \xor \bigl( (z_2 \leftshift{w} t) \bitand c \bigr)$. |
2904 | 2904 | \item
|
2905 | 2905 | Let $z_4 = z_3 \xor ( z_3 \rightshift \ell )$.
|
2906 | 2906 | \end{enumeratea}
|
|
4007 | 4007 | in which
|
4008 | 4008 | each operation is to be carried out modulo $2^{32}$,
|
4009 | 4009 | each indexing operator applied to \tcode{begin} is to be taken modulo $n$,
|
4010 |
| - and $T(x)$ is defined as $x \, \xor \, (x \, \rightshift \, 27)$: |
| 4010 | + and $T(x)$ is defined as $x \xor (x \rightshift 27)$: |
4011 | 4011 |
|
4012 | 4012 | \begin{enumeratea}
|
4013 | 4013 | \item
|
|
0 commit comments