|
202 | 202 |
|
203 | 203 | Moreover, if \tcode{a} is an expression of type \cv{}~\tcode{complex<T>*} and the expression \tcode{a[i]} is well-defined for an integer expression \tcode{i}, then: |
204 | 204 | \begin{itemize} |
205 | | -\item \tcode{reinterpret_cast<\cv{} T*>(a)[2*i]} designates the real part of \tcode{a[i]}, and |
206 | | -\item \tcode{reinterpret_cast<\cv{} T*>(a)[2*i + 1]} designates the imaginary part of \tcode{a[i]}. |
| 205 | +\item \tcode{reinterpret_cast<\cv{} T*>(a)[2 * i]} designates the real part of \tcode{a[i]}, and |
| 206 | +\item \tcode{reinterpret_cast<\cv{} T*>(a)[2 * i + 1]} designates the imaginary part of \tcode{a[i]}. |
207 | 207 | \end{itemize} |
208 | 208 |
|
209 | 209 | \rSec2[complex.syn]{Header \tcode{<complex>} synopsis} |
|
2837 | 2837 | \tcode{t <= w}, |
2838 | 2838 | \tcode{l <= w}, |
2839 | 2839 | \tcode{w <= numeric_limits<UIntType>::digits}, |
2840 | | - \tcode{a <= (1u<<w) - 1u}, |
2841 | | - \tcode{b <= (1u<<w) - 1u}, |
2842 | | - \tcode{c <= (1u<<w) - 1u}, |
2843 | | - \tcode{d <= (1u<<w) - 1u}, |
| 2840 | + \tcode{a <= (1u << w) - 1u}, |
| 2841 | + \tcode{b <= (1u << w) - 1u}, |
| 2842 | + \tcode{c <= (1u << w) - 1u}, |
| 2843 | + \tcode{d <= (1u << w) - 1u}, |
2844 | 2844 | and |
2845 | | - \tcode{f <= (1u<<w) - 1u}. |
| 2845 | + \tcode{f <= (1u << w) - 1u}. |
2846 | 2846 |
|
2847 | 2847 | \pnum |
2848 | 2848 | The textual representation |
|
3708 | 3708 | each constructor% |
3709 | 3709 | \indexlibraryctor{shuffle_order_engine} |
3710 | 3710 | that is not a copy constructor |
3711 | | -initializes $\tcode{V[0]}, \dotsc, \tcode{V[k-1]}$ and $Y$, |
| 3711 | +initializes $\tcode{V[0]}, \dotsc, \tcode{V[k - 1]}$ and $Y$, |
3712 | 3712 | in that order, |
3713 | 3713 | with values returned by successive invocations of \tcode{e()}.% |
3714 | 3714 | \indextext{random number generation!engines|)} |
|
0 commit comments