Skip to content

Commit b5b65ed

Browse files
jensmaurertkoeppe
authored andcommitted
[rand] Use \dotsc, not \ldots for comma-separated lists (#2033)
1 parent 32eae82 commit b5b65ed

File tree

1 file changed

+34
-34
lines changed

1 file changed

+34
-34
lines changed

source/numerics.tex

Lines changed: 34 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -2980,7 +2980,7 @@
29802980
of \state{x}{i}
29812981
consists of
29822982
the values of
2983-
$X_{i-n}, \ldots, X_{i-1}$,
2983+
$X_{i-n}, \dotsc, X_{i-1}$,
29842984
in that order.
29852985

29862986
\indexlibrary{\idxcode{mersenne_twister_engine}!constructor}%
@@ -2991,7 +2991,7 @@
29912991
\begin{itemdescr}
29922992
\pnum\effects Constructs a \tcode{mersenne_twister_engine} object.
29932993
Sets $X_{-n}$ to $\tcode{value} \bmod 2^w$.
2994-
Then, iteratively for $i = 1\!-\!n,\ldots,-1$,
2994+
Then, iteratively for $i = 1\!-\!n,\dotsc,-1$,
29952995
sets $X_i$
29962996
to
29972997
\[%
@@ -3018,7 +3018,7 @@
30183018
and $a$ an array (or equivalent)
30193019
of length $ n \cdot k $,
30203020
invokes \tcode{q.generate($a+0$, $a+n \cdot k$)}
3021-
and then, iteratively for $i = -n,\ldots,-1$,
3021+
and then, iteratively for $i = -n,\dotsc,-1$,
30223022
sets $X_i$
30233023
to $ \left(\sum_{j=0}^{k-1}a_{k(i+n)+j} \cdot 2^{32j} \right) \bmod 2^w $.
30243024
Finally,
@@ -3135,7 +3135,7 @@
31353135
\indextext{\idxcode{subtract_with_carry_engine}!textual representation}%
31363136
\indextext{textual representation!\idxcode{subtract_with_carry_engine}}
31373137
consists of the values of
3138-
$X_{i-r}, \ldots, X_{i-1}$,
3138+
$X_{i-r}, \dotsc, X_{i-1}$,
31393139
in that order, followed by $c$.
31403140

31413141

@@ -3147,7 +3147,7 @@
31473147
\begin{itemdescr}
31483148
\pnum\effects Constructs a \tcode{subtract_with_carry_engine} object.
31493149
Sets the values of
3150-
$ X_{-r}, \ldots, X_{-1} $,
3150+
$ X_{-r}, \dotsc, X_{-1} $,
31513151
in that order, as specified below.
31523152
If $X_{-1}$ is then $0$,
31533153
sets $c$ to $1$;
@@ -3161,7 +3161,7 @@
31613161
40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
31623162
\end{codeblock}
31633163
Then, to set each $X_k$,
3164-
obtain new values $ z_0, \ldots, z_{n-1} $
3164+
obtain new values $ z_0, \dotsc, z_{n-1} $
31653165
from $n = \lceil w/32 \rceil $ successive invocations
31663166
of \tcode{e} taken modulo $2^{32}$.
31673167
Set $X_k$ to $ \left( \sum_{j=0}^{n-1} z_j \cdot 2^{32j}\right) \bmod m$.
@@ -3184,7 +3184,7 @@
31843184
and $a$ an array (or equivalent)
31853185
of length $ r \cdot k $,
31863186
invokes \tcode{q.generate($a+0$, $a+r \cdot k$)}
3187-
and then, iteratively for $i = -r, \ldots, -1$,
3187+
and then, iteratively for $i = -r, \dotsc, -1$,
31883188
sets $X_i$
31893189
to $ \left(\sum_{j=0}^{k-1}a_{k(i+r)+j} \cdot 2^{32j} \right) \bmod m $.
31903190
If $X_{-1}$ is then $0$,
@@ -3604,7 +3604,7 @@
36043604
each constructor%
36053605
\indexlibrary{\idxcode{shuffle_order_engine}!constructor}
36063606
that is not a copy constructor
3607-
initializes $\tcode{V[0]}, \ldots, \tcode{V[k-1]}$ and $Y$,
3607+
initializes $\tcode{V[0]}, \dotsc, \tcode{V[k-1]}$ and $Y$,
36083608
in that order,
36093609
with values returned by successive invocations of \tcode{e()}.%
36103610
\indextext{random number generation!engines|)}
@@ -3879,7 +3879,7 @@
38793879
returns $0.0$.
38803880
Otherwise, returns an entropy estimate\footnote{If a device has $n$ states
38813881
whose respective probabilities are
3882-
$ P_0, \ldots, P_{n-1} $,
3882+
$ P_0, \dotsc, P_{n-1} $,
38833883
the device entropy $S$ is defined as\\
38843884
$ S = - \sum_{i=0}^{n-1} P_i \cdot \log P_i $.}
38853885
for the random numbers returned by \tcode{operator()},
@@ -4050,7 +4050,7 @@
40504050
\item
40514051
With $m$ as the larger of $s + 1$ and $n$,
40524052
transform the elements of the range:
4053-
iteratively for $ k = 0, \ldots, m-1 $,
4053+
iteratively for $ k = 0, \dotsc, m-1 $,
40544054
calculate values
40554055
\begin{eqnarray*}
40564056
r_1 & = &
@@ -4077,7 +4077,7 @@
40774077
\item
40784078
Transform the elements of the range again,
40794079
beginning where the previous step ended:
4080-
iteratively for $ k = m, \ldots, m\!+\!n\!-\!1 $,
4080+
iteratively for $ k = m, \dotsc, m\!+\!n\!-\!1 $,
40814081
calculate values
40824082
\begin{eqnarray*}
40834083
r_3 & = &
@@ -4195,7 +4195,7 @@
41954195

41964196
\pnum\effects
41974197
Invokes \tcode{g()} $k$ times
4198-
to obtain values $ g_0, \ldots, g_{k-1} $, respectively.
4198+
to obtain values $ g_0, \dotsc, g_{k-1} $, respectively.
41994199
Calculates a quantity
42004200
\[
42014201
S = \sum_{i=0}^{k-1} (g_i - \tcode{g.min()})
@@ -5782,15 +5782,15 @@
57825782
\indextext{discrete probability function!\idxcode{discrete_distribution}}%
57835783
\indextext{\idxcode{discrete_distribution}!discrete probability function}%
57845784
\[%
5785-
P(i\,|\,p_0,\ldots,p_{n-1})
5785+
P(i\,|\,p_0,\dotsc,p_{n-1})
57865786
= p_i
57875787
\; \mbox{.}
57885788
\]
57895789

57905790
\pnum
57915791
Unless specified otherwise,
57925792
the distribution parameters are calculated as:
5793-
$p_k = {w_k / S} \; \mbox{ for } k = 0, \ldots, n\!-\!1$ ,
5793+
$p_k = {w_k / S} \; \mbox{ for } k = 0, \dotsc, n\!-\!1$ ,
57945794
in which
57955795
the values $w_k$,
57965796
commonly known as the \techterm{weights}%
@@ -5910,7 +5910,7 @@
59105910
let $ w_0 = 1 $.
59115911
Otherwise,
59125912
let $ w_k = \tcode{fw}(\tcode{xmin} + k \cdot \delta + \delta / 2) $
5913-
for $ k = 0, \ldots, n\!-\!1 $.
5913+
for $ k = 0, \dotsc, n\!-\!1 $.
59145914

59155915
\pnum\complexity
59165916
The number of invocations of \tcode{fw} shall not exceed $n$.
@@ -5925,7 +5925,7 @@
59255925
\pnum\returns A \tcode{vector<double>}
59265926
whose \tcode{size} member returns $n$
59275927
and whose $ \tcode{operator[]} $ member returns $p_k$
5928-
when invoked with argument $k$ for $k = 0, \ldots, n\!-\!1 $.
5928+
when invoked with argument $k$ for $k = 0, \dotsc, n\!-\!1 $.
59295929
\end{itemdescr}
59305930

59315931

@@ -5947,7 +5947,7 @@
59475947
\indextext{probability density function!\idxcode{piecewise_constant_distribution}}%
59485948
\indextext{\idxcode{piecewise_constant_distribution}!probability density function}%
59495949
\[%
5950-
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_{n-1})
5950+
p(x\,|\,b_0,\dotsc,b_n,\;\rho_0,\dotsc,\rho_{n-1})
59515951
= \rho_i
59525952
\; \mbox{,}
59535953
\mbox{ for } b_i \le x < b_{i+1}
@@ -5961,13 +5961,13 @@
59615961
\indextext{interval boundaries!\idxcode{piecewise_constant_distribution}}%
59625962
, shall satisfy the relation
59635963
$ b_i < b_{i+1} $
5964-
for $i = 0, \ldots, n\!-\!1 $.
5964+
for $i = 0, \dotsc, n\!-\!1 $.
59655965
Unless specified otherwise,
59665966
the remaining $n$ distribution parameters are calculated as:
59675967
\[%
59685968
\rho_k = \;
59695969
\frac{w_k}{S \cdot (b_{k+1}-b_k)}
5970-
\; \mbox{ for } k = 0, \ldots, n\!-\!1,
5970+
\; \mbox{ for } k = 0, \dotsc, n\!-\!1,
59715971
\]
59725972
in which the values $w_k$,
59735973
commonly known as the \techterm{weights}%
@@ -6089,10 +6089,10 @@
60896089
and $ b_1 = 1 $.
60906090
Otherwise,
60916091
let $\bigl[\tcode{bl.begin()}, \tcode{bl.end()}\bigr)$
6092-
form a sequence $ b_0, \ldots, b_n $,
6092+
form a sequence $ b_0, \dotsc, b_n $,
60936093
and
60946094
let $ w_k = \tcode{fw}\bigl(\bigl(b_{k+1} + b_k\bigr) / 2\bigr) $
6095-
for $ k = 0, \ldots, n\!-\!1 $.
6095+
for $ k = 0, \dotsc, n\!-\!1 $.
60966096

60976097
\pnum\complexity
60986098
The number of invocations of \tcode{fw} shall not exceed $n$.
@@ -6120,8 +6120,8 @@
61206120
\pnum\effects Constructs a \tcode{piecewise_constant_distribution} object
61216121
with parameters taken or calculated
61226122
from the following values:
6123-
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \ldots, n $,
6124-
and $ w_k = \tcode{fw}(b_k + \delta / 2) $ for $ k = 0, \ldots, n\!-\!1 $.
6123+
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \dotsc, n $,
6124+
and $ w_k = \tcode{fw}(b_k + \delta / 2) $ for $ k = 0, \dotsc, n\!-\!1 $.
61256125

61266126
\pnum\complexity
61276127
The number of invocations of \tcode{fw} shall not exceed $n$.
@@ -6136,7 +6136,7 @@
61366136
\pnum\returns A \tcode{vector<result_type>}
61376137
whose \tcode{size} member returns $n + 1$
61386138
and whose $ \tcode{operator[]} $ member returns $b_k$
6139-
when invoked with argument $k$ for $k = 0, \ldots, n $.
6139+
when invoked with argument $k$ for $k = 0, \dotsc, n $.
61406140
\end{itemdescr}
61416141

61426142
\indexlibrarymember{densities}{piecewise_constant_distribution}%
@@ -6148,7 +6148,7 @@
61486148
\pnum\returns A \tcode{vector<result_type>}
61496149
whose \tcode{size} member returns $n$
61506150
and whose $ \tcode{operator[]} $ member returns $\rho_k$
6151-
when invoked with argument $k$ for $k = 0, \ldots, n\!-\!1 $.
6151+
when invoked with argument $k$ for $k = 0, \dotsc, n\!-\!1 $.
61526152
\end{itemdescr}
61536153

61546154

@@ -6170,7 +6170,7 @@
61706170
\indextext{probability density function!\idxcode{piecewise_linear_distribution}}%
61716171
\indextext{\idxcode{piecewise_linear_distribution}!probability density function}%
61726172
\[%
6173-
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_n)
6173+
p(x\,|\,b_0,\dotsc,b_n,\;\rho_0,\dotsc,\rho_n)
61746174
= \rho_i \cdot {\frac{b_{i+1} - x}{b_{i+1} - b_i}}
61756175
+ \rho_{i+1} \cdot {\frac{x - b_i}{b_{i+1} - b_i}}
61766176
\; \mbox{,}
@@ -6185,10 +6185,10 @@
61856185
\indextext{interval boundaries!\idxcode{piecewise_linear_distribution}}%
61866186
, shall satisfy the relation
61876187
$ b_i < b_{i+1} $
6188-
for $i = 0, \ldots, n\!-\!1 $.
6188+
for $i = 0, \dotsc, n\!-\!1 $.
61896189
Unless specified otherwise,
61906190
the remaining $n+1$ distribution parameters are calculated as
6191-
$ \rho_k = {w_k / S} \; \mbox{ for } k = 0, \ldots, n $,
6191+
$ \rho_k = {w_k / S} \; \mbox{ for } k = 0, \dotsc, n $,
61926192
in which the values $w_k$,
61936193
commonly known as the \techterm{weights at boundaries}%
61946194
\indextext{\idxcode{piecewise_linear_distribution}!weights at boundaries}%
@@ -6310,10 +6310,10 @@
63106310
and $ b_1 = 1 $.
63116311
Otherwise,
63126312
let $\bigl[\tcode{bl.begin(),} \tcode{bl.end()}\bigr)$
6313-
form a sequence $ b_0, \ldots, b_n $,
6313+
form a sequence $ b_0, \dotsc, b_n $,
63146314
and
63156315
let $ w_k = \tcode{fw}(b_k) $
6316-
for $ k = 0, \ldots, n $.
6316+
for $ k = 0, \dotsc, n $.
63176317

63186318
\pnum\complexity
63196319
The number of invocations of \tcode{fw} shall not exceed $n+1$.
@@ -6341,8 +6341,8 @@
63416341
\pnum\effects Constructs a \tcode{piecewise_linear_distribution} object
63426342
with parameters taken or calculated
63436343
from the following values:
6344-
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \ldots, n $,
6345-
and $ w_k = \tcode{fw}(b_k) $ for $ k = 0, \ldots, n $.
6344+
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \dotsc, n $,
6345+
and $ w_k = \tcode{fw}(b_k) $ for $ k = 0, \dotsc, n $.
63466346

63476347
\pnum\complexity
63486348
The number of invocations of \tcode{fw} shall not exceed $n+1$.
@@ -6357,7 +6357,7 @@
63576357
\pnum\returns A \tcode{vector<result_type>}
63586358
whose \tcode{size} member returns $n + 1$
63596359
and whose $ \tcode{operator[]} $ member returns $b_k$
6360-
when invoked with argument $k$ for $k = 0, \ldots, n $.
6360+
when invoked with argument $k$ for $k = 0, \dotsc, n $.
63616361
\end{itemdescr}
63626362

63636363
\indexlibrarymember{densities}{piecewise_linear_distribution}%
@@ -6369,7 +6369,7 @@
63696369
\pnum\returns A \tcode{vector<result_type>}
63706370
whose \tcode{size} member returns $n$
63716371
and whose $ \tcode{operator[]} $ member returns $\rho_k$
6372-
when invoked with argument $k$ for $ k = 0, \ldots, n $.
6372+
when invoked with argument $k$ for $ k = 0, \dotsc, n $.
63736373
\end{itemdescr}%
63746374
%
63756375
\indextext{random number distributions!sampling|)}%

0 commit comments

Comments
 (0)