|
2998 | 2998 | is $\mathsf{GA}(\state{x}{i}) = \state{x}{i+1}$.
|
2999 | 2999 |
|
3000 | 3000 | \indexlibrary{\idxcode{linear_congruential_engine}}%
|
| 3001 | +\indexlibrarymember{result_type}{linear_congruential_engine}% |
3001 | 3002 | \begin{codeblock}
|
3002 | 3003 | template<class UIntType, UIntType a, UIntType c, UIntType m>
|
3003 | 3004 | class linear_congruential_engine {
|
|
3154 | 3155 | \end{itemize}
|
3155 | 3156 |
|
3156 | 3157 | \indexlibrary{\idxcode{mersenne_twister_engine}}%
|
| 3158 | +\indexlibrarymember{result_type}{mersenne_twister_engine}% |
3157 | 3159 | \begin{codeblock}
|
3158 | 3160 | template<class UIntType, size_t w, size_t n, size_t m, size_t r,
|
3159 | 3161 | UIntType a, size_t u, UIntType d, size_t s,
|
|
3325 | 3327 | of advancing the engine's state as described above.
|
3326 | 3328 |
|
3327 | 3329 | \indexlibrary{\idxcode{subtract_with_carry_engine}}%
|
| 3330 | +\indexlibrarymember{result_type}{subtract_with_carry_engine}% |
3328 | 3331 | \begin{codeblock}
|
3329 | 3332 | template<class UIntType, size_t w, size_t s, size_t r>
|
3330 | 3333 | class subtract_with_carry_engine {
|
|
3525 | 3528 | while advancing \tcode{e}'s state as described above.
|
3526 | 3529 |
|
3527 | 3530 | \indexlibrary{\idxcode{discard_block_engine}}%
|
| 3531 | +\indexlibrarymember{result_type}{discard_block_engine}% |
3528 | 3532 | \begin{codeblock}
|
3529 | 3533 | template<class Engine, size_t p, size_t r>
|
3530 | 3534 | class discard_block_engine {
|
|
3672 | 3676 | \end{codeblock}
|
3673 | 3677 |
|
3674 | 3678 | \indexlibrary{\idxcode{independent_bits_engine}}%
|
| 3679 | +\indexlibrarymember{result_type}{independent_bits_engine}% |
3675 | 3680 | \begin{codeblock}
|
3676 | 3681 | template<class Engine, size_t w, class UIntType>
|
3677 | 3682 | class independent_bits_engine {
|
|
3771 | 3776 | produced while advancing \tcode{e}'s state as described above.
|
3772 | 3777 |
|
3773 | 3778 | \indexlibrary{\idxcode{shuffle_order_engine}}%
|
| 3779 | +\indexlibrarymember{result_type}{shuffle_order_engine}% |
3774 | 3780 | \begin{codeblock}
|
3775 | 3781 | template<class Engine, size_t k>
|
3776 | 3782 | class shuffle_order_engine {
|
|
4045 | 4051 | the implementation may employ a random number engine.
|
4046 | 4052 |
|
4047 | 4053 | \indexlibrary{\idxcode{random_device}}%
|
| 4054 | +\indexlibrarymember{result_type}{random_device}% |
4048 | 4055 | \begin{codeblock}
|
4049 | 4056 | class random_device {
|
4050 | 4057 | public:
|
|
4151 | 4158 | \rSec3[rand.util.seedseq]{Class \tcode{seed_seq}}%
|
4152 | 4159 |
|
4153 | 4160 | \indexlibrary{\idxcode{seed_seq}}%
|
| 4161 | +\indexlibrarymember{result_type}{seed_seq}% |
4154 | 4162 | \begin{codeblock}
|
4155 | 4163 | class seed_seq {
|
4156 | 4164 | public:
|
|
4510 | 4518 | \[ P(i\,|\,a,b) = 1 / (b - a + 1) \text{ .} \]
|
4511 | 4519 |
|
4512 | 4520 | \indexlibrary{\idxcode{uniform_int_distribution}}%
|
| 4521 | +\indexlibrarymember{result_type}{uniform_int_distribution}% |
4513 | 4522 | \begin{codeblock}
|
4514 | 4523 | template<class IntType = int>
|
4515 | 4524 | class uniform_int_distribution {
|
|
4596 | 4605 | \end{note}
|
4597 | 4606 |
|
4598 | 4607 | \indexlibrary{\idxcode{uniform_real_distribution}}%
|
| 4608 | +\indexlibrarymember{result_type}{uniform_real_distribution}% |
4599 | 4609 | \begin{codeblock}
|
4600 | 4610 | template<class RealType = double>
|
4601 | 4611 | class uniform_real_distribution {
|
|
4697 | 4707 | \]
|
4698 | 4708 |
|
4699 | 4709 | \indexlibrary{\idxcode{bernoulli_distribution}}%
|
| 4710 | +\indexlibrarymember{result_type}{bernoulli_distribution}% |
4700 | 4711 | \begin{codeblock}
|
4701 | 4712 | class bernoulli_distribution {
|
4702 | 4713 | public:
|
|
4767 | 4778 | \[ P(i\,|\,t,p) = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} \text{ .} \]
|
4768 | 4779 |
|
4769 | 4780 | \indexlibrary{\idxcode{binomial_distribution}}%
|
| 4781 | +\indexlibrarymember{result_type}{binomial_distribution}% |
4770 | 4782 | \begin{codeblock}
|
4771 | 4783 | template<class IntType = int>
|
4772 | 4784 | class binomial_distribution {
|
|
4848 | 4860 | \[ P(i\,|\,p) = p \cdot (1-p)^{i} \text{ .} \]
|
4849 | 4861 |
|
4850 | 4862 | \indexlibrary{\idxcode{geometric_distribution}}%
|
| 4863 | +\indexlibrarymember{result_type}{geometric_distribution}% |
4851 | 4864 | \begin{codeblock}
|
4852 | 4865 | template<class IntType = int>
|
4853 | 4866 | class geometric_distribution {
|
|
4923 | 4936 | \end{note}
|
4924 | 4937 |
|
4925 | 4938 | \indexlibrary{\idxcode{negative_binomial_distribution}}%
|
| 4939 | +\indexlibrarymember{result_type}{negative_binomial_distribution}% |
4926 | 4940 | \begin{codeblock}
|
4927 | 4941 | template<class IntType = int>
|
4928 | 4942 | class negative_binomial_distribution {
|
|
5024 | 5038 | .
|
5025 | 5039 |
|
5026 | 5040 | \indexlibrary{\idxcode{poisson_distribution}}%
|
| 5041 | +\indexlibrarymember{result_type}{poisson_distribution}% |
5027 | 5042 | \begin{codeblock}
|
5028 | 5043 | template<class IntType = int>
|
5029 | 5044 | class poisson_distribution
|
|
5095 | 5110 | \[ p(x\,|\,\lambda) = \lambda e^{-\lambda x} \text{ .} \]
|
5096 | 5111 |
|
5097 | 5112 | \indexlibrary{\idxcode{exponential_distribution}}%
|
| 5113 | +\indexlibrarymember{result_type}{exponential_distribution}% |
5098 | 5114 | \begin{codeblock}
|
5099 | 5115 | template<class RealType = double>
|
5100 | 5116 | class exponential_distribution {
|
|
5168 | 5184 | \text{ .} \]
|
5169 | 5185 |
|
5170 | 5186 | \indexlibrary{\idxcode{gamma_distribution}}%
|
| 5187 | +\indexlibrarymember{result_type}{gamma_distribution}% |
5171 | 5188 | \begin{codeblock}
|
5172 | 5189 | template<class RealType = double>
|
5173 | 5190 | class gamma_distribution {
|
|
5255 | 5272 | \text{ .} \]
|
5256 | 5273 |
|
5257 | 5274 | \indexlibrary{\idxcode{weibull_distribution}}%
|
| 5275 | +\indexlibrarymember{result_type}{weibull_distribution}% |
5258 | 5276 | \begin{codeblock}
|
5259 | 5277 | template<class RealType = double>
|
5260 | 5278 | class weibull_distribution {
|
|
5347 | 5365 | \text{ .} \]
|
5348 | 5366 |
|
5349 | 5367 | \indexlibrary{\idxcode{extreme_value_distribution}}%
|
| 5368 | +\indexlibrarymember{result_type}{extreme_value_distribution}% |
5350 | 5369 | \begin{codeblock}
|
5351 | 5370 | template<class RealType = double>
|
5352 | 5371 | class extreme_value_distribution {
|
|
5461 | 5480 | .
|
5462 | 5481 |
|
5463 | 5482 | \indexlibrary{\idxcode{normal_distribution}}%
|
| 5483 | +\indexlibrarymember{result_type}{normal_distribution}% |
5464 | 5484 | \begin{codeblock}
|
5465 | 5485 | template<class RealType = double>
|
5466 | 5486 | class normal_distribution {
|
|
5547 | 5567 | \text{ .} \]
|
5548 | 5568 |
|
5549 | 5569 | \indexlibrary{\idxcode{lognormal_distribution}}%
|
| 5570 | +\indexlibrarymember{result_type}{lognormal_distribution}% |
5550 | 5571 | \begin{codeblock}
|
5551 | 5572 | template<class RealType = double>
|
5552 | 5573 | class lognormal_distribution {
|
|
5631 | 5652 | \[ p(x\,|\,n) = \frac{x^{(n/2)-1} \cdot e^{-x/2}}{\Gamma(n/2) \cdot 2^{n/2}} \text{ .} \]
|
5632 | 5653 |
|
5633 | 5654 | \indexlibrary{\idxcode{chi_squared_distribution}}%
|
| 5655 | +\indexlibrarymember{result_type}{chi_squared_distribution}% |
5634 | 5656 | \begin{codeblock}
|
5635 | 5657 | template<class RealType = double>
|
5636 | 5658 | class chi_squared_distribution {
|
|
5703 | 5725 | \[ p(x\,|\,a,b) = \left(\pi b \left(1 + \left(\frac{x-a}{b} \right)^2 \, \right)\right)^{-1} \text{ .} \]
|
5704 | 5726 |
|
5705 | 5727 | \indexlibrary{\idxcode{cauchy_distribution}}%
|
| 5728 | +\indexlibrarymember{result_type}{cauchy_distribution}% |
5706 | 5729 | \begin{codeblock}
|
5707 | 5730 | template<class RealType = double>
|
5708 | 5731 | class cauchy_distribution {
|
|
5791 | 5814 | \text{ .} \]
|
5792 | 5815 |
|
5793 | 5816 | \indexlibrary{\idxcode{fisher_f_distribution}}%
|
| 5817 | +\indexlibrarymember{result_type}{fisher_distribution}% |
5794 | 5818 | \begin{codeblock}
|
5795 | 5819 | template<class RealType = double>
|
5796 | 5820 | class fisher_f_distribution {
|
|
5878 | 5902 | \text{ .} \]
|
5879 | 5903 |
|
5880 | 5904 | \indexlibrary{\idxcode{student_t_distribution}}%
|
| 5905 | +\indexlibrarymember{result_type}{student_t_distribution}% |
5881 | 5906 | \begin{codeblock}
|
5882 | 5907 | template<class RealType = double>
|
5883 | 5908 | class student_t_distribution {
|
|
5976 | 6001 | $0 < S = w_0 + \dotsb + w_{n - 1}$.
|
5977 | 6002 |
|
5978 | 6003 | \indexlibrary{\idxcode{discrete_distribution}}%
|
| 6004 | +\indexlibrarymember{result_type}{discrete_distribution}% |
5979 | 6005 | \begin{codeblock}
|
5980 | 6006 | template<class IntType = int>
|
5981 | 6007 | class discrete_distribution {
|
|
6143 | 6169 | $0 < S = w_0 + \dotsb + w_{n-1}$.
|
6144 | 6170 |
|
6145 | 6171 | \indexlibrary{\idxcode{piecewise_constant_distribution}}%
|
| 6172 | +\indexlibrarymember{result_type}{piecewise_constant_distribution}% |
6146 | 6173 | \begin{codeblock}
|
6147 | 6174 | template<class RealType = double>
|
6148 | 6175 | class piecewise_constant_distribution {
|
|
6357 | 6384 | \[ 0 < S = \frac{1}{2} \cdot \sum_{k=0}^{n-1} (w_k + w_{k+1}) \cdot (b_{k+1} - b_k) \text{ .} \]
|
6358 | 6385 |
|
6359 | 6386 | \indexlibrary{\idxcode{piecewise_linear_distribution}}%
|
| 6387 | +\indexlibrarymember{result_type}{piecewise_linear_distribution}% |
6360 | 6388 | \begin{codeblock}
|
6361 | 6389 | template<class RealType = double>
|
6362 | 6390 | class piecewise_linear_distribution {
|
|
0 commit comments