|
4 | 4 | import re |
5 | 5 | import json |
6 | 6 | import requests |
7 | | -from typing import Dict, Any, List, Type, Optional, Union, get_origin, cast, Literal |
| 7 | +from typing import Dict, Any, List, Type, Optional, Union, get_origin, cast |
8 | 8 | from pydantic import Field, create_model |
9 | 9 | from crewai.tools import BaseTool |
10 | 10 | from crewai_tools.tools.crewai_platform_tools.misc import get_platform_api_base_url, get_platform_integration_token |
11 | 11 |
|
12 | 12 |
|
| 13 | +class AllOfSchemaAnalyzer: |
| 14 | + """Helper class to analyze and merge allOf schemas.""" |
| 15 | + |
| 16 | + def __init__(self, schemas: List[Dict[str, Any]]): |
| 17 | + self.schemas = schemas |
| 18 | + self._explicit_types = [] |
| 19 | + self._merged_properties = {} |
| 20 | + self._merged_required = [] |
| 21 | + self._analyze_schemas() |
| 22 | + |
| 23 | + def _analyze_schemas(self) -> None: |
| 24 | + """Analyze all schemas and extract relevant information.""" |
| 25 | + for schema in self.schemas: |
| 26 | + if "type" in schema: |
| 27 | + self._explicit_types.append(schema["type"]) |
| 28 | + |
| 29 | + # Merge object properties |
| 30 | + if schema.get("type") == "object" and "properties" in schema: |
| 31 | + self._merged_properties.update(schema["properties"]) |
| 32 | + if "required" in schema: |
| 33 | + self._merged_required.extend(schema["required"]) |
| 34 | + |
| 35 | + def has_consistent_type(self) -> bool: |
| 36 | + """Check if all schemas have the same explicit type.""" |
| 37 | + return len(set(self._explicit_types)) == 1 if self._explicit_types else False |
| 38 | + |
| 39 | + def get_consistent_type(self) -> Type[Any]: |
| 40 | + """Get the consistent type if all schemas agree.""" |
| 41 | + if not self.has_consistent_type(): |
| 42 | + raise ValueError("No consistent type found") |
| 43 | + |
| 44 | + type_mapping = { |
| 45 | + "string": str, |
| 46 | + "integer": int, |
| 47 | + "number": float, |
| 48 | + "boolean": bool, |
| 49 | + "array": list, |
| 50 | + "object": dict, |
| 51 | + "null": type(None), |
| 52 | + } |
| 53 | + return type_mapping.get(self._explicit_types[0], str) |
| 54 | + |
| 55 | + def has_object_schemas(self) -> bool: |
| 56 | + """Check if any schemas are object types with properties.""" |
| 57 | + return bool(self._merged_properties) |
| 58 | + |
| 59 | + def get_merged_properties(self) -> Dict[str, Any]: |
| 60 | + """Get merged properties from all object schemas.""" |
| 61 | + return self._merged_properties |
| 62 | + |
| 63 | + def get_merged_required_fields(self) -> List[str]: |
| 64 | + """Get merged required fields from all object schemas.""" |
| 65 | + return list(set(self._merged_required)) # Remove duplicates |
| 66 | + |
| 67 | + def get_fallback_type(self) -> Type[Any]: |
| 68 | + """Get a fallback type when merging fails.""" |
| 69 | + if self._explicit_types: |
| 70 | + # Use the first explicit type |
| 71 | + type_mapping = { |
| 72 | + "string": str, |
| 73 | + "integer": int, |
| 74 | + "number": float, |
| 75 | + "boolean": bool, |
| 76 | + "array": list, |
| 77 | + "object": dict, |
| 78 | + "null": type(None), |
| 79 | + } |
| 80 | + return type_mapping.get(self._explicit_types[0], str) |
| 81 | + return str |
| 82 | + |
| 83 | + |
13 | 84 | class CrewAIPlatformActionTool(BaseTool): |
14 | 85 | action_name: str = Field(default="", description="The name of the action") |
15 | 86 | action_schema: Dict[str, Any] = Field( |
@@ -84,40 +155,150 @@ def _extract_schema_info( |
84 | 155 | return schema_props, required |
85 | 156 |
|
86 | 157 | def _process_schema_type(self, schema: Dict[str, Any], type_name: str) -> Type[Any]: |
87 | | - if "anyOf" in schema: |
88 | | - any_of_types = schema["anyOf"] |
89 | | - is_nullable = any(t.get("type") == "null" for t in any_of_types) |
90 | | - non_null_types = [t for t in any_of_types if t.get("type") != "null"] |
| 158 | + """ |
| 159 | + Process a JSON Schema type definition into a Python type. |
| 160 | +
|
| 161 | + Handles complex schema constructs like anyOf, oneOf, allOf, enums, arrays, and objects. |
| 162 | + """ |
| 163 | + # Handle composite schema types (anyOf, oneOf, allOf) |
| 164 | + if composite_type := self._process_composite_schema(schema, type_name): |
| 165 | + return composite_type |
91 | 166 |
|
92 | | - if non_null_types: |
93 | | - base_type = self._process_schema_type(non_null_types[0], type_name) |
94 | | - return Optional[base_type] if is_nullable else base_type |
95 | | - return cast(Type[Any], Optional[str]) |
| 167 | + # Handle primitive types and simple constructs |
| 168 | + return self._process_primitive_schema(schema, type_name) |
96 | 169 |
|
97 | | - if "oneOf" in schema: |
98 | | - return self._process_schema_type(schema["oneOf"][0], type_name) |
| 170 | + def _process_composite_schema(self, schema: Dict[str, Any], type_name: str) -> Optional[Type[Any]]: |
| 171 | + """Process composite schema types: anyOf, oneOf, allOf.""" |
| 172 | + if "anyOf" in schema: |
| 173 | + return self._process_any_of_schema(schema["anyOf"], type_name) |
| 174 | + elif "oneOf" in schema: |
| 175 | + return self._process_one_of_schema(schema["oneOf"], type_name) |
| 176 | + elif "allOf" in schema: |
| 177 | + return self._process_all_of_schema(schema["allOf"], type_name) |
| 178 | + return None |
| 179 | + |
| 180 | + def _process_any_of_schema(self, any_of_types: List[Dict[str, Any]], type_name: str) -> Type[Any]: |
| 181 | + """Process anyOf schema - creates Union of possible types.""" |
| 182 | + is_nullable = any(t.get("type") == "null" for t in any_of_types) |
| 183 | + non_null_types = [t for t in any_of_types if t.get("type") != "null"] |
| 184 | + |
| 185 | + if not non_null_types: |
| 186 | + return cast(Type[Any], Optional[str]) # fallback for only-null case |
| 187 | + |
| 188 | + base_type = ( |
| 189 | + self._process_schema_type(non_null_types[0], type_name) |
| 190 | + if len(non_null_types) == 1 |
| 191 | + else self._create_union_type(non_null_types, type_name, "AnyOf") |
| 192 | + ) |
| 193 | + return Optional[base_type] if is_nullable else base_type |
| 194 | + |
| 195 | + def _process_one_of_schema(self, one_of_types: List[Dict[str, Any]], type_name: str) -> Type[Any]: |
| 196 | + """Process oneOf schema - creates Union of mutually exclusive types.""" |
| 197 | + return ( |
| 198 | + self._process_schema_type(one_of_types[0], type_name) |
| 199 | + if len(one_of_types) == 1 |
| 200 | + else self._create_union_type(one_of_types, type_name, "OneOf") |
| 201 | + ) |
99 | 202 |
|
100 | | - if "allOf" in schema: |
101 | | - return self._process_schema_type(schema["allOf"][0], type_name) |
| 203 | + def _process_all_of_schema(self, all_of_schemas: List[Dict[str, Any]], type_name: str) -> Type[Any]: |
| 204 | + """Process allOf schema - merges schemas that must all be satisfied.""" |
| 205 | + if len(all_of_schemas) == 1: |
| 206 | + return self._process_schema_type(all_of_schemas[0], type_name) |
| 207 | + return self._merge_all_of_schemas(all_of_schemas, type_name) |
| 208 | + |
| 209 | + def _create_union_type(self, schemas: List[Dict[str, Any]], type_name: str, prefix: str) -> Type[Any]: |
| 210 | + """Create a Union type from multiple schemas.""" |
| 211 | + return Union[ |
| 212 | + tuple( |
| 213 | + self._process_schema_type(schema, f"{type_name}{prefix}{i}") |
| 214 | + for i, schema in enumerate(schemas) |
| 215 | + ) |
| 216 | + ] |
102 | 217 |
|
| 218 | + def _process_primitive_schema(self, schema: Dict[str, Any], type_name: str) -> Type[Any]: |
| 219 | + """Process primitive schema types: string, number, array, object, etc.""" |
103 | 220 | json_type = schema.get("type", "string") |
104 | 221 |
|
105 | 222 | if "enum" in schema: |
106 | | - enum_values = schema["enum"] |
107 | | - if not enum_values: |
108 | | - return self._map_json_type_to_python(json_type) |
109 | | - return Literal[tuple(enum_values)] |
| 223 | + return self._process_enum_schema(schema, json_type) |
110 | 224 |
|
111 | 225 | if json_type == "array": |
112 | | - items_schema = schema.get("items", {"type": "string"}) |
113 | | - item_type = self._process_schema_type(items_schema, f"{type_name}Item") |
114 | | - return List[item_type] |
| 226 | + return self._process_array_schema(schema, type_name) |
115 | 227 |
|
116 | 228 | if json_type == "object": |
117 | 229 | return self._create_nested_model(schema, type_name) |
118 | 230 |
|
119 | 231 | return self._map_json_type_to_python(json_type) |
120 | 232 |
|
| 233 | + def _process_enum_schema(self, schema: Dict[str, Any], json_type: str) -> Type[Any]: |
| 234 | + """Process enum schema - currently falls back to base type.""" |
| 235 | + enum_values = schema["enum"] |
| 236 | + if not enum_values: |
| 237 | + return self._map_json_type_to_python(json_type) |
| 238 | + |
| 239 | + # For Literal types, we need to pass the values directly, not as a tuple |
| 240 | + # This is a workaround since we can't dynamically create Literal types easily |
| 241 | + # Fall back to the base JSON type for now |
| 242 | + return self._map_json_type_to_python(json_type) |
| 243 | + |
| 244 | + def _process_array_schema(self, schema: Dict[str, Any], type_name: str) -> Type[Any]: |
| 245 | + items_schema = schema.get("items", {"type": "string"}) |
| 246 | + item_type = self._process_schema_type(items_schema, f"{type_name}Item") |
| 247 | + return List[item_type] |
| 248 | + |
| 249 | + def _merge_all_of_schemas(self, schemas: List[Dict[str, Any]], type_name: str) -> Type[Any]: |
| 250 | + schema_analyzer = AllOfSchemaAnalyzer(schemas) |
| 251 | + |
| 252 | + if schema_analyzer.has_consistent_type(): |
| 253 | + return schema_analyzer.get_consistent_type() |
| 254 | + |
| 255 | + if schema_analyzer.has_object_schemas(): |
| 256 | + return self._create_merged_object_model( |
| 257 | + schema_analyzer.get_merged_properties(), |
| 258 | + schema_analyzer.get_merged_required_fields(), |
| 259 | + type_name |
| 260 | + ) |
| 261 | + |
| 262 | + return schema_analyzer.get_fallback_type() |
| 263 | + |
| 264 | + def _create_merged_object_model(self, properties: Dict[str, Any], required: List[str], model_name: str) -> Type[Any]: |
| 265 | + full_model_name = f"{self._base_name}{model_name}AllOf" |
| 266 | + |
| 267 | + if full_model_name in self._model_registry: |
| 268 | + return self._model_registry[full_model_name] |
| 269 | + |
| 270 | + if not properties: |
| 271 | + return dict |
| 272 | + |
| 273 | + field_definitions = self._build_field_definitions(properties, required, model_name) |
| 274 | + |
| 275 | + try: |
| 276 | + merged_model = create_model(full_model_name, **field_definitions) |
| 277 | + self._model_registry[full_model_name] = merged_model |
| 278 | + return merged_model |
| 279 | + except Exception as e: |
| 280 | + return dict |
| 281 | + |
| 282 | + def _build_field_definitions(self, properties: Dict[str, Any], required: List[str], model_name: str) -> Dict[str, Any]: |
| 283 | + field_definitions = {} |
| 284 | + |
| 285 | + for prop_name, prop_schema in properties.items(): |
| 286 | + prop_desc = prop_schema.get("description", "") |
| 287 | + is_required = prop_name in required |
| 288 | + |
| 289 | + try: |
| 290 | + prop_type = self._process_schema_type( |
| 291 | + prop_schema, f"{model_name}{self._sanitize_name(prop_name).title()}" |
| 292 | + ) |
| 293 | + except Exception: |
| 294 | + prop_type = str |
| 295 | + |
| 296 | + field_definitions[prop_name] = self._create_field_definition( |
| 297 | + prop_type, is_required, prop_desc |
| 298 | + ) |
| 299 | + |
| 300 | + return field_definitions |
| 301 | + |
121 | 302 | def _create_nested_model(self, schema: Dict[str, Any], model_name: str) -> Type[Any]: |
122 | 303 | full_model_name = f"{self._base_name}{model_name}" |
123 | 304 |
|
|
0 commit comments