|
| 1 | +""" |
| 2 | +Example demonstrating prompt caching with CrewAI for cost optimization. |
| 3 | +
|
| 4 | +This example shows how to use prompt caching with kickoff_for_each() and |
| 5 | +kickoff_async() to reduce costs when processing multiple similar inputs. |
| 6 | +""" |
| 7 | + |
| 8 | +from crewai import Agent, Crew, Task, LLM |
| 9 | +import asyncio |
| 10 | + |
| 11 | + |
| 12 | +def create_crew_with_caching(): |
| 13 | + """Create a crew with prompt caching enabled.""" |
| 14 | + |
| 15 | + llm = LLM( |
| 16 | + model="anthropic/claude-3-5-sonnet-20240620", |
| 17 | + enable_prompt_caching=True, |
| 18 | + temperature=0.1 |
| 19 | + ) |
| 20 | + |
| 21 | + analyst = Agent( |
| 22 | + role="Data Analyst", |
| 23 | + goal="Analyze data and provide insights", |
| 24 | + backstory="""You are an experienced data analyst with expertise in |
| 25 | + statistical analysis, data visualization, and business intelligence. |
| 26 | + You have worked with various industries including finance, healthcare, |
| 27 | + and technology. Your approach is methodical and you always provide |
| 28 | + actionable insights based on data patterns.""", |
| 29 | + llm=llm |
| 30 | + ) |
| 31 | + |
| 32 | + analysis_task = Task( |
| 33 | + description="""Analyze the following dataset: {dataset} |
| 34 | + |
| 35 | + Please provide: |
| 36 | + 1. Summary statistics |
| 37 | + 2. Key patterns and trends |
| 38 | + 3. Actionable recommendations |
| 39 | + 4. Potential risks or concerns |
| 40 | + |
| 41 | + Be thorough in your analysis and provide specific examples.""", |
| 42 | + expected_output="A comprehensive analysis report with statistics, trends, and recommendations", |
| 43 | + agent=analyst |
| 44 | + ) |
| 45 | + |
| 46 | + return Crew(agents=[analyst], tasks=[analysis_task]) |
| 47 | + |
| 48 | + |
| 49 | +def example_kickoff_for_each(): |
| 50 | + """Example using kickoff_for_each with prompt caching.""" |
| 51 | + print("Running kickoff_for_each example with prompt caching...") |
| 52 | + |
| 53 | + crew = create_crew_with_caching() |
| 54 | + |
| 55 | + datasets = [ |
| 56 | + {"dataset": "Q1 2024 sales data showing 15% growth in mobile segment"}, |
| 57 | + {"dataset": "Q2 2024 customer satisfaction scores with 4.2/5 average rating"}, |
| 58 | + {"dataset": "Q3 2024 website traffic data with 25% increase in organic search"}, |
| 59 | + {"dataset": "Q4 2024 employee engagement survey with 78% satisfaction rate"} |
| 60 | + ] |
| 61 | + |
| 62 | + results = crew.kickoff_for_each(datasets) |
| 63 | + |
| 64 | + for i, result in enumerate(results, 1): |
| 65 | + print(f"\n--- Analysis {i} ---") |
| 66 | + print(result.raw) |
| 67 | + |
| 68 | + if crew.usage_metrics: |
| 69 | + print(f"\nTotal usage metrics:") |
| 70 | + print(f"Total tokens: {crew.usage_metrics.total_tokens}") |
| 71 | + print(f"Prompt tokens: {crew.usage_metrics.prompt_tokens}") |
| 72 | + print(f"Completion tokens: {crew.usage_metrics.completion_tokens}") |
| 73 | + |
| 74 | + |
| 75 | +async def example_kickoff_for_each_async(): |
| 76 | + """Example using kickoff_for_each_async with prompt caching.""" |
| 77 | + print("Running kickoff_for_each_async example with prompt caching...") |
| 78 | + |
| 79 | + crew = create_crew_with_caching() |
| 80 | + |
| 81 | + datasets = [ |
| 82 | + {"dataset": "Marketing campaign A: 12% CTR, 3.5% conversion rate"}, |
| 83 | + {"dataset": "Marketing campaign B: 8% CTR, 4.1% conversion rate"}, |
| 84 | + {"dataset": "Marketing campaign C: 15% CTR, 2.8% conversion rate"} |
| 85 | + ] |
| 86 | + |
| 87 | + results = await crew.kickoff_for_each_async(datasets) |
| 88 | + |
| 89 | + for i, result in enumerate(results, 1): |
| 90 | + print(f"\n--- Async Analysis {i} ---") |
| 91 | + print(result.raw) |
| 92 | + |
| 93 | + if crew.usage_metrics: |
| 94 | + print(f"\nTotal async usage metrics:") |
| 95 | + print(f"Total tokens: {crew.usage_metrics.total_tokens}") |
| 96 | + |
| 97 | + |
| 98 | +def example_bedrock_caching(): |
| 99 | + """Example using AWS Bedrock with prompt caching.""" |
| 100 | + print("Running Bedrock example with prompt caching...") |
| 101 | + |
| 102 | + llm = LLM( |
| 103 | + model="bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0", |
| 104 | + enable_prompt_caching=True |
| 105 | + ) |
| 106 | + |
| 107 | + agent = Agent( |
| 108 | + role="Legal Analyst", |
| 109 | + goal="Review legal documents and identify key clauses", |
| 110 | + backstory="Expert legal analyst with 10+ years experience in contract review", |
| 111 | + llm=llm |
| 112 | + ) |
| 113 | + |
| 114 | + task = Task( |
| 115 | + description="Review this contract section: {contract_section}", |
| 116 | + expected_output="Summary of key legal points and potential issues", |
| 117 | + agent=agent |
| 118 | + ) |
| 119 | + |
| 120 | + crew = Crew(agents=[agent], tasks=[task]) |
| 121 | + |
| 122 | + contract_sections = [ |
| 123 | + {"contract_section": "Section 1: Payment terms and conditions"}, |
| 124 | + {"contract_section": "Section 2: Intellectual property rights"}, |
| 125 | + {"contract_section": "Section 3: Termination clauses"} |
| 126 | + ] |
| 127 | + |
| 128 | + results = crew.kickoff_for_each(contract_sections) |
| 129 | + |
| 130 | + for i, result in enumerate(results, 1): |
| 131 | + print(f"\n--- Legal Review {i} ---") |
| 132 | + print(result.raw) |
| 133 | + |
| 134 | + |
| 135 | +def example_openai_caching(): |
| 136 | + """Example using OpenAI with prompt caching.""" |
| 137 | + print("Running OpenAI example with prompt caching...") |
| 138 | + |
| 139 | + llm = LLM( |
| 140 | + model="gpt-4o", |
| 141 | + enable_prompt_caching=True |
| 142 | + ) |
| 143 | + |
| 144 | + agent = Agent( |
| 145 | + role="Content Writer", |
| 146 | + goal="Create engaging content for different audiences", |
| 147 | + backstory="Professional content writer with expertise in various writing styles and formats", |
| 148 | + llm=llm |
| 149 | + ) |
| 150 | + |
| 151 | + task = Task( |
| 152 | + description="Write a {content_type} about: {topic}", |
| 153 | + expected_output="Well-structured and engaging content piece", |
| 154 | + agent=agent |
| 155 | + ) |
| 156 | + |
| 157 | + crew = Crew(agents=[agent], tasks=[task]) |
| 158 | + |
| 159 | + content_requests = [ |
| 160 | + {"content_type": "blog post", "topic": "benefits of renewable energy"}, |
| 161 | + {"content_type": "social media post", "topic": "importance of cybersecurity"}, |
| 162 | + {"content_type": "newsletter", "topic": "latest AI developments"} |
| 163 | + ] |
| 164 | + |
| 165 | + results = crew.kickoff_for_each(content_requests) |
| 166 | + |
| 167 | + for i, result in enumerate(results, 1): |
| 168 | + print(f"\n--- Content Piece {i} ---") |
| 169 | + print(result.raw) |
| 170 | + |
| 171 | + |
| 172 | +if __name__ == "__main__": |
| 173 | + print("=== CrewAI Prompt Caching Examples ===\n") |
| 174 | + |
| 175 | + example_kickoff_for_each() |
| 176 | + |
| 177 | + print("\n" + "="*50 + "\n") |
| 178 | + |
| 179 | + asyncio.run(example_kickoff_for_each_async()) |
| 180 | + |
| 181 | + print("\n" + "="*50 + "\n") |
| 182 | + |
| 183 | + example_bedrock_caching() |
| 184 | + |
| 185 | + print("\n" + "="*50 + "\n") |
| 186 | + |
| 187 | + example_openai_caching() |
0 commit comments