@@ -33,7 +33,7 @@ class P: # pylint: disable=missing-class-docstring
3333
3434
3535@overload
36- def apply_lazy ( # type: ignore[valid-type]
36+ def lazy_apply ( # type: ignore[valid-type]
3737 func : Callable [P , ArrayLike ],
3838 * args : Array ,
3939 shape : tuple [int | None , ...] | None = None ,
@@ -45,7 +45,7 @@ def apply_lazy( # type: ignore[valid-type]
4545
4646
4747@overload
48- def apply_lazy ( # type: ignore[valid-type]
48+ def lazy_apply ( # type: ignore[valid-type]
4949 func : Callable [P , Sequence [ArrayLike ]],
5050 * args : Array ,
5151 shape : Sequence [tuple [int | None , ...]],
@@ -56,7 +56,7 @@ def apply_lazy( # type: ignore[valid-type]
5656) -> tuple [Array , ...]: ... # numpydoc ignore=GL08
5757
5858
59- def apply_lazy ( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
59+ def lazy_apply ( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
6060 func : Callable [P , Array | Sequence [ArrayLike ]],
6161 * args : Array ,
6262 shape : tuple [int | None , ...] | Sequence [tuple [int | None , ...]] | None = None ,
@@ -142,7 +142,7 @@ def apply_lazy( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
142142 This allows applying eager functions to dask arrays.
143143 The dask graph won't be computed.
144144
145- `apply_lazy ` doesn't know if `func` reduces along any axes; also, shape
145+ `lazy_apply ` doesn't know if `func` reduces along any axes; also, shape
146146 changes are non-trivial in chunked Dask arrays. For these reasons, all inputs
147147 will be rechunked into a single chunk.
148148
@@ -156,7 +156,7 @@ def apply_lazy( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
156156 If you want to distribute the calculation across multiple workers, you
157157 should use :func:`dask.array.map_blocks`, :func:`dask.array.map_overlap`,
158158 :func:`dask.array.blockwise`, or a native Dask wrapper instead of
159- `apply_lazy `.
159+ `lazy_apply `.
160160
161161 Dask wrapping around other backends
162162 If `as_numpy=False`, `func` will receive in input eager arrays of the meta
@@ -229,7 +229,7 @@ def apply_lazy( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
229229 meta_xp = array_namespace (* metas )
230230
231231 wrapped = dask .delayed (
232- _apply_lazy_wrapper (func , as_numpy , multi_output , meta_xp ),
232+ _lazy_apply_wrapper (func , as_numpy , multi_output , meta_xp ),
233233 pure = True ,
234234 )
235235 # This finalizes each arg, which is the same as arg.rechunk(-1).
@@ -256,7 +256,7 @@ def apply_lazy( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
256256
257257 import jax # type: ignore[import-not-found] # pylint: disable=import-outside-toplevel,import-error # pyright: ignore[reportMissingImports]
258258
259- wrapped = _apply_lazy_wrapper (func , as_numpy , multi_output , xp )
259+ wrapped = _lazy_apply_wrapper (func , as_numpy , multi_output , xp )
260260
261261 if any (s is None for shape in shapes for s in shape ):
262262 # Unknown output shape. Won't work with jax.jit, but it
@@ -280,20 +280,20 @@ def apply_lazy( # type: ignore[valid-type] # numpydoc ignore=GL07,SA04
280280
281281 else :
282282 # Eager backends
283- wrapped = _apply_lazy_wrapper (func , as_numpy , multi_output , xp )
283+ wrapped = _lazy_apply_wrapper (func , as_numpy , multi_output , xp )
284284 out = wrapped (* args , ** kwargs )
285285
286286 return out if multi_output else out [0 ]
287287
288288
289- def _apply_lazy_wrapper ( # type: ignore[no-any-explicit] # numpydoc ignore=PR01,RT01
289+ def _lazy_apply_wrapper ( # type: ignore[no-any-explicit] # numpydoc ignore=PR01,RT01
290290 func : Callable [..., ArrayLike | Sequence [ArrayLike ]],
291291 as_numpy : bool ,
292292 multi_output : bool ,
293293 xp : ModuleType ,
294294) -> Callable [..., tuple [Array , ...]]:
295295 """
296- Helper of `apply_lazy `.
296+ Helper of `lazy_apply `.
297297
298298 Given a function that accepts one or more arrays as positional arguments and returns
299299 a single array-like or a sequence of array-likes, return a function that accepts the
0 commit comments