Skip to content

Stuck on starting up page #59

@GitHubEmploy

Description

@GitHubEmploy

Hello, when I tried running this and using it, it ever worked. It was just stuck on this page.
C:\Users\Mohit\PycharmProjects\SuperAIPR\venv\Scripts\python.exe C:/Users/Mohit/PycharmProjects/SuperAIPR/armchair-expert/armchair_expert.py
INFO:ArmchairExpert:Status: STARTING_UP
INFO:ArmchairExpert:Loaded Discord Connector.
INFO:ArmchairExpert:Loading spaCy model
2020-11-10 13:41:58.346187: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
INFO:ArmchairExpert:Training begin
INFO:ArmchairExpert:Training_Preprocessing_Markov(Import)
INFO:ArmchairExpert:Training_Preprocessing_Markov(Discord)
INFO:ArmchairExpert:Training(Markov)
INFO:ArmchairExpert:Training_Preprocessing_Structure(Import)
INFO:ArmchairExpert:Training_Preprocessing_Structure(Discord)
INFO:ArmchairExpert:Training(Structure)
2020-11-10 13:41:58.930290: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
INFO:ArmchairExpert:Training end
INFO:ArmchairExpert:Status: RUNNING
2020-11-10 13:42:08.089287: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library nvcuda.dll
2020-11-10 13:42:08.173283: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 680 computeCapability: 3.0
coreClock: 1.0585GHz coreCount: 8 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 179.05GiB/s
2020-11-10 13:42:08.174598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties:
pciBusID: 0000:20:00.0 name: Quadro P400 computeCapability: 6.1
coreClock: 1.2525GHz coreCount: 2 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 29.88GiB/s
2020-11-10 13:42:08.174914: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
2020-11-10 13:42:08.234582: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
2020-11-10 13:42:08.263904: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cufft64_10.dll
2020-11-10 13:42:08.272198: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library curand64_10.dll
2020-11-10 13:42:08.350489: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusolver64_10.dll
2020-11-10 13:42:08.376081: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusparse64_10.dll
2020-11-10 13:42:08.379728: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll
2020-11-10 13:42:08.380804: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1812] Ignoring visible gpu device (device: 0, name: GeForce GTX 680, pci bus id: 0000:01:00.0, compute capability: 3.0) with Cuda compute capability 3.0. The minimum required Cuda capability is 3.5.
2020-11-10 13:42:08.381653: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1843] Ignoring visible gpu device (device: 1, name: Quadro P400, pci bus id: 0000:20:00.0, compute capability: 6.1) with core count: 2. The minimum required count is 8. You can adjust this requirement with the env var TF_MIN_GPU_MULTIPROCESSOR_COUNT.
2020-11-10 13:42:08.432344: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1715f876120 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-11-10 13:42:08.432594: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2020-11-10 13:42:08.434576: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-11-10 13:42:08.434815: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263]
Model: "sequential"


Layer (type) Output Shape Param #

embedding (Embedding) (None, 16, 120) 14400


lstm (LSTM) (None, 128) 127488


dense (Dense) (None, 120) 15480

Total params: 157,368
Trainable params: 157,368
Non-trainable params: 0


2020-11-10 13:42:09.270123: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 680 computeCapability: 3.0
coreClock: 1.0585GHz coreCount: 8 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 179.05GiB/s
2020-11-10 13:42:09.270433: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties:
pciBusID: 0000:20:00.0 name: Quadro P400 computeCapability: 6.1
coreClock: 1.2525GHz coreCount: 2 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 29.88GiB/s
2020-11-10 13:42:09.272560: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
2020-11-10 13:42:09.273504: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
2020-11-10 13:42:09.275615: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cufft64_10.dll
2020-11-10 13:42:09.275742: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library curand64_10.dll
2020-11-10 13:42:09.275866: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusolver64_10.dll
2020-11-10 13:42:09.275991: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusparse64_10.dll
2020-11-10 13:42:09.276120: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll
2020-11-10 13:42:09.277873: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1812] Ignoring visible gpu device (device: 0, name: GeForce GTX 680, pci bus id: 0000:01:00.0, compute capability: 3.0) with Cuda compute capability 3.0. The minimum required Cuda capability is 3.5.
2020-11-10 13:42:09.278200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1843] Ignoring visible gpu device (device: 1, name: Quadro P400, pci bus id: 0000:20:00.0, compute capability: 6.1) with core count: 2. The minimum required count is 8. You can adjust this requirement with the env var TF_MIN_GPU_MULTIPROCESSOR_COUNT.
2020-11-10 13:42:09.279155: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-11-10 13:42:09.279284: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0 1
2020-11-10 13:42:09.279366: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N N
2020-11-10 13:42:09.279511: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 1: N N
2020-11-10 13:42:09.281033: I tensorflow/compiler/xla/service/platform_util.cc:139] StreamExecutor cuda device (0) is of insufficient compute capability: 3.5 required, device is 3.0
2020-11-10 13:42:09.282005: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x17167ef3790 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-11-10 13:42:09.282233: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Quadro P400, Compute Capability 6.1
Its been like this for 20 minutes and I don't know what to do

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions