|
| 1 | +use std::{env::set_var, sync::Arc, time::Duration}; |
| 2 | + |
| 3 | +use criterion::{criterion_group, criterion_main, Criterion}; |
| 4 | + |
| 5 | +use cubeclient::models::{V1CubeMeta, V1CubeMetaDimension, V1CubeMetaMeasure}; |
| 6 | +use cubesql::compile::{ |
| 7 | + test::{ |
| 8 | + rewrite_engine::{cube_context, query_to_logical_plan, rewrite_rules, rewrite_runner}, |
| 9 | + sql_generator, |
| 10 | + }, |
| 11 | + MetaContext, |
| 12 | +}; |
| 13 | +use egg::StopReason; |
| 14 | +use itertools::Itertools; |
| 15 | +use uuid::Uuid; |
| 16 | + |
| 17 | +macro_rules! bench_large_model { |
| 18 | + ($DIMS:expr, $NAME:expr, $QUERY_FN:expr, $CRITERION:expr) => {{ |
| 19 | + let context = Arc::new(futures::executor::block_on(cube_context( |
| 20 | + get_large_model_test_tenant_ctx($DIMS), |
| 21 | + ))); |
| 22 | + let plan = query_to_logical_plan($QUERY_FN($DIMS), &context); |
| 23 | + let rules = rewrite_rules(context.clone()); |
| 24 | + |
| 25 | + let bench_name = format!("large_model_{}_{}", $DIMS, $NAME); |
| 26 | + $CRITERION.bench_function(&bench_name, |b| { |
| 27 | + b.iter(|| { |
| 28 | + let context = context.clone(); |
| 29 | + let plan = plan.clone(); |
| 30 | + let rules = rules.clone(); |
| 31 | + |
| 32 | + let runner = rewrite_runner(plan, context); |
| 33 | + let stop_reason = runner.run(&rules).stop_reason.unwrap(); |
| 34 | + if !matches!(stop_reason, StopReason::Saturated) { |
| 35 | + panic!( |
| 36 | + "Error running {} benchmark: stop reason is {:?}", |
| 37 | + bench_name, stop_reason |
| 38 | + ); |
| 39 | + } |
| 40 | + }) |
| 41 | + }); |
| 42 | + }}; |
| 43 | +} |
| 44 | + |
| 45 | +pub fn get_large_model_test_tenant_ctx(dims: usize) -> Arc<MetaContext> { |
| 46 | + Arc::new(MetaContext::new( |
| 47 | + get_large_model_test_meta(dims), |
| 48 | + vec![(format!("LargeCube_{}", dims), "default".to_string())] |
| 49 | + .into_iter() |
| 50 | + .collect(), |
| 51 | + vec![("default".to_string(), sql_generator(vec![]))] |
| 52 | + .into_iter() |
| 53 | + .collect(), |
| 54 | + Uuid::new_v4(), |
| 55 | + )) |
| 56 | +} |
| 57 | + |
| 58 | +pub fn get_large_model_test_meta(dims: usize) -> Vec<V1CubeMeta> { |
| 59 | + if dims < 1 { |
| 60 | + panic!("Number of dimensions should be at least 1"); |
| 61 | + } |
| 62 | + |
| 63 | + let cube_name = format!("LargeCube_{}", dims); |
| 64 | + vec![V1CubeMeta { |
| 65 | + name: cube_name.clone(), |
| 66 | + title: None, |
| 67 | + measures: vec![ |
| 68 | + V1CubeMetaMeasure { |
| 69 | + name: format!("{}.count", cube_name), |
| 70 | + title: None, |
| 71 | + _type: "number".to_string(), |
| 72 | + agg_type: Some("count".to_string()), |
| 73 | + }, |
| 74 | + V1CubeMetaMeasure { |
| 75 | + name: format!("{}.sum", cube_name), |
| 76 | + title: None, |
| 77 | + _type: "number".to_string(), |
| 78 | + agg_type: Some("sum".to_string()), |
| 79 | + }, |
| 80 | + ], |
| 81 | + dimensions: (1..=dims) |
| 82 | + .map(|n| V1CubeMetaDimension { |
| 83 | + name: format!("{}.n{}", cube_name, n), |
| 84 | + _type: "number".to_string(), |
| 85 | + }) |
| 86 | + .collect(), |
| 87 | + segments: vec![], |
| 88 | + joins: None, |
| 89 | + }] |
| 90 | +} |
| 91 | + |
| 92 | +fn select_one_dimension(dims: usize) -> String { |
| 93 | + format!( |
| 94 | + r#" |
| 95 | + SELECT n1 AS n1 |
| 96 | + FROM LargeCube_{} |
| 97 | + GROUP BY 1 |
| 98 | + "#, |
| 99 | + dims, |
| 100 | + ) |
| 101 | +} |
| 102 | + |
| 103 | +fn select_wildcard(dims: usize) -> String { |
| 104 | + format!( |
| 105 | + r#" |
| 106 | + SELECT * |
| 107 | + FROM LargeCube_{} |
| 108 | + "#, |
| 109 | + dims, |
| 110 | + ) |
| 111 | +} |
| 112 | + |
| 113 | +fn select_all_dimensions(dims: usize) -> String { |
| 114 | + let select_expr = Itertools::intersperse( |
| 115 | + (1..=dims).map(|n| format!("n{} AS n{}", n, n)), |
| 116 | + ", ".to_string(), |
| 117 | + ) |
| 118 | + .collect::<String>(); |
| 119 | + let group_expr = Itertools::intersperse((1..=dims).map(|n| n.to_string()), ", ".to_string()) |
| 120 | + .collect::<String>(); |
| 121 | + format!( |
| 122 | + r#" |
| 123 | + SELECT {} |
| 124 | + FROM LargeCube_{} |
| 125 | + GROUP BY {} |
| 126 | + "#, |
| 127 | + select_expr, dims, group_expr, |
| 128 | + ) |
| 129 | +} |
| 130 | + |
| 131 | +fn select_all_dimensions_with_filter(dims: usize) -> String { |
| 132 | + let select_expr = Itertools::intersperse( |
| 133 | + (1..=dims).map(|n| format!("n{} AS n{}", n, n)), |
| 134 | + ", ".to_string(), |
| 135 | + ) |
| 136 | + .collect::<String>(); |
| 137 | + let group_expr = Itertools::intersperse((1..=dims).map(|n| n.to_string()), ", ".to_string()) |
| 138 | + .collect::<String>(); |
| 139 | + format!( |
| 140 | + r#" |
| 141 | + SELECT {} |
| 142 | + FROM LargeCube_{} |
| 143 | + WHERE n1 > 10 |
| 144 | + GROUP BY {} |
| 145 | + "#, |
| 146 | + select_expr, dims, group_expr, |
| 147 | + ) |
| 148 | +} |
| 149 | + |
| 150 | +fn select_many_filters(dims: usize) -> String { |
| 151 | + let select_expr = Itertools::intersperse( |
| 152 | + (1..=dims).map(|n| format!("n{} AS n{}", n, n)), |
| 153 | + ", ".to_string(), |
| 154 | + ) |
| 155 | + .collect::<String>(); |
| 156 | + let filter_expr = Itertools::intersperse( |
| 157 | + (1..=dims).map(|n| format!("n{} > 10", n)), |
| 158 | + " AND ".to_string(), |
| 159 | + ) |
| 160 | + .collect::<String>(); |
| 161 | + let group_expr = Itertools::intersperse((1..=dims).map(|n| n.to_string()), ", ".to_string()) |
| 162 | + .collect::<String>(); |
| 163 | + format!( |
| 164 | + r#" |
| 165 | + SELECT {} |
| 166 | + FROM LargeCube_{} |
| 167 | + WHERE {} |
| 168 | + GROUP BY {} |
| 169 | + "#, |
| 170 | + select_expr, dims, filter_expr, group_expr, |
| 171 | + ) |
| 172 | +} |
| 173 | + |
| 174 | +fn large_model_100_dims(c: &mut Criterion) { |
| 175 | + // This is required for `select_many_filters` test, remove after flattening filters |
| 176 | + set_var("CUBESQL_REWRITE_MAX_NODES", "100000"); |
| 177 | + |
| 178 | + let dims = 100; |
| 179 | + bench_large_model!(dims, "select_one_dimension", select_one_dimension, c); |
| 180 | + bench_large_model!(dims, "select_wildcard", select_wildcard, c); |
| 181 | + bench_large_model!(dims, "select_all_dimensions", select_all_dimensions, c); |
| 182 | + bench_large_model!( |
| 183 | + dims, |
| 184 | + "select_all_dimensions_with_filter", |
| 185 | + select_all_dimensions_with_filter, |
| 186 | + c |
| 187 | + ); |
| 188 | + bench_large_model!(dims, "select_many_filters", select_many_filters, c); |
| 189 | +} |
| 190 | + |
| 191 | +fn large_model_300_dims(c: &mut Criterion) { |
| 192 | + let dims = 300; |
| 193 | + bench_large_model!(dims, "select_one_dimension", select_one_dimension, c); |
| 194 | + bench_large_model!(dims, "select_wildcard", select_wildcard, c); |
| 195 | + bench_large_model!(dims, "select_all_dimensions", select_all_dimensions, c); |
| 196 | + bench_large_model!( |
| 197 | + dims, |
| 198 | + "select_all_dimensions_with_filter", |
| 199 | + select_all_dimensions_with_filter, |
| 200 | + c |
| 201 | + ); |
| 202 | + // `select_many_filters` takes too long with 300 filters; requires flattening |
| 203 | + //bench_large_model!(dims, "select_many_filters", select_many_filters, c); |
| 204 | +} |
| 205 | + |
| 206 | +fn large_model_1000_dims(c: &mut Criterion) { |
| 207 | + let dims = 1000; |
| 208 | + bench_large_model!(dims, "select_one_dimension", select_one_dimension, c); |
| 209 | + bench_large_model!(dims, "select_wildcard", select_wildcard, c); |
| 210 | + bench_large_model!(dims, "select_all_dimensions", select_all_dimensions, c); |
| 211 | + bench_large_model!( |
| 212 | + dims, |
| 213 | + "select_all_dimensions_with_filter", |
| 214 | + select_all_dimensions_with_filter, |
| 215 | + c |
| 216 | + ); |
| 217 | + // `select_many_filters` takes too long with 1000 filters; requires flattening |
| 218 | + //bench_large_model!(dims, "select_many_filters", select_many_filters, c); |
| 219 | +} |
| 220 | + |
| 221 | +criterion_group! { |
| 222 | + name = large_model; |
| 223 | + config = Criterion::default().measurement_time(Duration::from_secs(15)).sample_size(10); |
| 224 | + targets = large_model_100_dims, large_model_300_dims, large_model_1000_dims |
| 225 | +} |
| 226 | +criterion_main!(large_model); |
0 commit comments