|
| 1 | +use datafusion::physical_plan::displayable; |
| 2 | +use pretty_assertions::assert_eq; |
| 3 | +use regex::Regex; |
| 4 | + |
| 5 | +use crate::compile::{ |
| 6 | + test::{convert_select_to_query_plan, init_testing_logger, utils::LogicalPlanTestUtils}, |
| 7 | + DatabaseProtocol, Rewriter, |
| 8 | +}; |
| 9 | + |
| 10 | +// TODO Tests more joins with grouped queries |
| 11 | +// Join structure: |
| 12 | +// * ungrouped inner join grouped CubeScan |
| 13 | +// * ungrouped inner join grouped CubeScan with filters with values |
| 14 | +// * ungrouped inner join grouped WrappedSelect |
| 15 | +// * ungrouped inner join grouped WrappedSelect with filters with values |
| 16 | +// * ungrouped left join grouped |
| 17 | +// * grouped left join ungrouped |
| 18 | +// * ungrouped join EmptyRelation |
| 19 | +// Join condition columns: |
| 20 | +// * one dim |
| 21 | +// * two dim |
| 22 | +// * one measure |
| 23 | +// * __cubeJoinField |
| 24 | +// * one member expression dim (like ON LOWER(dim) = LOWER(column)) |
| 25 | +// Join condition predicate: |
| 26 | +// * = |
| 27 | +// * IS NOT DISTINCT FROM |
| 28 | +// * COALESCE + IS NULL |
| 29 | +// Grouped query: |
| 30 | +// * Grouping |
| 31 | +// * Aggregation |
| 32 | +// * Filter |
| 33 | +// * Sort |
| 34 | +// * Limit |
| 35 | +// * Wrapper |
| 36 | +// On top of of join |
| 37 | +// * Grouping |
| 38 | +// * Aggregation |
| 39 | +// * Filter |
| 40 | +// * Limit |
| 41 | +// Test long and otherwise bad aliases for columns: |
| 42 | +// * in both parts |
| 43 | +// * in join condition |
| 44 | +// * in expressions on top |
| 45 | +// Test long and otherwise bad aliases for tables: |
| 46 | +// * for grouped join part |
| 47 | +// * for ungrouped join part |
| 48 | +// * inside grouped join part |
| 49 | +// * inside ungrouped join part |
| 50 | +// * for result |
| 51 | + |
| 52 | +/// Simple join between ungrouped and grouped query should plan as a push-to-Cube query |
| 53 | +/// with subquery_joins and with concrete member expressions in SQL |
| 54 | +#[tokio::test] |
| 55 | +async fn test_join_ungrouped_with_grouped() { |
| 56 | + if !Rewriter::sql_push_down_enabled() { |
| 57 | + return; |
| 58 | + } |
| 59 | + init_testing_logger(); |
| 60 | + |
| 61 | + let query_plan = convert_select_to_query_plan( |
| 62 | + // language=PostgreSQL |
| 63 | + r#" |
| 64 | +SELECT |
| 65 | + kibana_grouped.avg_price, |
| 66 | + KibanaSampleDataEcommerce.customer_gender AS gender, |
| 67 | + AVG(KibanaSampleDataEcommerce.avgPrice) AS price |
| 68 | +FROM |
| 69 | + KibanaSampleDataEcommerce |
| 70 | +INNER JOIN ( |
| 71 | + SELECT |
| 72 | + customer_gender, |
| 73 | + AVG(avgPrice) as avg_price |
| 74 | + FROM |
| 75 | + KibanaSampleDataEcommerce |
| 76 | + GROUP BY 1 |
| 77 | +) kibana_grouped |
| 78 | +ON ( |
| 79 | + (KibanaSampleDataEcommerce.customer_gender = kibana_grouped.customer_gender) |
| 80 | +) |
| 81 | +GROUP BY |
| 82 | + 1, |
| 83 | + 2 |
| 84 | +; |
| 85 | + "# |
| 86 | + .to_string(), |
| 87 | + DatabaseProtocol::PostgreSQL, |
| 88 | + ) |
| 89 | + .await; |
| 90 | + |
| 91 | + let physical_plan = query_plan.as_physical_plan().await.unwrap(); |
| 92 | + println!( |
| 93 | + "Physical plan: {}", |
| 94 | + displayable(physical_plan.as_ref()).indent() |
| 95 | + ); |
| 96 | + |
| 97 | + let request = query_plan |
| 98 | + .as_logical_plan() |
| 99 | + .find_cube_scan_wrapped_sql() |
| 100 | + .request; |
| 101 | + |
| 102 | + assert_eq!(request.subquery_joins.as_ref().unwrap().len(), 1); |
| 103 | + |
| 104 | + let subquery = &request.subquery_joins.unwrap()[0]; |
| 105 | + |
| 106 | + assert!(!subquery.sql.contains("ungrouped")); |
| 107 | + assert_eq!(subquery.join_type, "INNER"); |
| 108 | + assert!(subquery.on.contains( |
| 109 | + r#"${KibanaSampleDataEcommerce.customer_gender} = \"kibana_grouped\".\"customer_gender\""# |
| 110 | + )); |
| 111 | + |
| 112 | + // Measure from top aggregation |
| 113 | + assert!(query_plan |
| 114 | + .as_logical_plan() |
| 115 | + .find_cube_scan_wrapped_sql() |
| 116 | + .wrapped_sql |
| 117 | + .sql |
| 118 | + .contains(r#"\"expr\":\"${KibanaSampleDataEcommerce.avgPrice}\""#)); |
| 119 | + // Dimension from ungrouped side |
| 120 | + assert!(query_plan |
| 121 | + .as_logical_plan() |
| 122 | + .find_cube_scan_wrapped_sql() |
| 123 | + .wrapped_sql |
| 124 | + .sql |
| 125 | + .contains(r#"\"expr\":\"${KibanaSampleDataEcommerce.customer_gender}\""#)); |
| 126 | + // Dimension from grouped side |
| 127 | + assert!(query_plan |
| 128 | + .as_logical_plan() |
| 129 | + .find_cube_scan_wrapped_sql() |
| 130 | + .wrapped_sql |
| 131 | + .sql |
| 132 | + .contains(r#"\"expr\":\"\\\"kibana_grouped\\\".\\\"avg_price\\\"\""#)); |
| 133 | +} |
| 134 | + |
| 135 | +/// Join between ungrouped and grouped query with two columns join condition |
| 136 | +/// should plan as a push-to-Cube query with subquery_joins |
| 137 | +#[tokio::test] |
| 138 | +async fn test_join_ungrouped_with_grouped_two_columns_condition() { |
| 139 | + if !Rewriter::sql_push_down_enabled() { |
| 140 | + return; |
| 141 | + } |
| 142 | + init_testing_logger(); |
| 143 | + |
| 144 | + let query_plan = convert_select_to_query_plan( |
| 145 | + // language=PostgreSQL |
| 146 | + r#" |
| 147 | +SELECT |
| 148 | + AVG(KibanaSampleDataEcommerce.avgPrice) AS price |
| 149 | +FROM |
| 150 | + KibanaSampleDataEcommerce |
| 151 | +INNER JOIN ( |
| 152 | + SELECT |
| 153 | + customer_gender, |
| 154 | + notes, |
| 155 | + AVG(avgPrice) as avg_price |
| 156 | + FROM |
| 157 | + KibanaSampleDataEcommerce |
| 158 | + GROUP BY 1, 2 |
| 159 | +) kibana_grouped |
| 160 | +ON ( |
| 161 | + KibanaSampleDataEcommerce.customer_gender = kibana_grouped.customer_gender AND KibanaSampleDataEcommerce.notes = kibana_grouped.notes |
| 162 | +) |
| 163 | +; |
| 164 | + "# |
| 165 | + .to_string(), |
| 166 | + DatabaseProtocol::PostgreSQL, |
| 167 | + ) |
| 168 | + .await; |
| 169 | + |
| 170 | + let physical_plan = query_plan.as_physical_plan().await.unwrap(); |
| 171 | + println!( |
| 172 | + "Physical plan: {}", |
| 173 | + displayable(physical_plan.as_ref()).indent() |
| 174 | + ); |
| 175 | + |
| 176 | + let request = query_plan |
| 177 | + .as_logical_plan() |
| 178 | + .find_cube_scan_wrapped_sql() |
| 179 | + .request; |
| 180 | + |
| 181 | + assert_eq!(request.subquery_joins.as_ref().unwrap().len(), 1); |
| 182 | + |
| 183 | + let subquery = &request.subquery_joins.unwrap()[0]; |
| 184 | + |
| 185 | + assert!(!subquery.sql.contains("ungrouped")); |
| 186 | + assert_eq!(subquery.join_type, "INNER"); |
| 187 | + assert!(subquery.on.contains( |
| 188 | + r#"${KibanaSampleDataEcommerce.customer_gender} = \"kibana_grouped\".\"customer_gender\""# |
| 189 | + )); |
| 190 | + assert!(subquery |
| 191 | + .on |
| 192 | + .contains(r#"${KibanaSampleDataEcommerce.notes} = \"kibana_grouped\".\"notes\""#)); |
| 193 | + |
| 194 | + // Measure from top aggregation |
| 195 | + assert!(query_plan |
| 196 | + .as_logical_plan() |
| 197 | + .find_cube_scan_wrapped_sql() |
| 198 | + .wrapped_sql |
| 199 | + .sql |
| 200 | + .contains(r#"\"expr\":\"${KibanaSampleDataEcommerce.avgPrice}\""#)); |
| 201 | +} |
| 202 | + |
| 203 | +/// Join between ungrouped and grouped query with filter + sort + limit |
| 204 | +/// should plan as a push-to-Cube query with subquery_joins |
| 205 | +#[tokio::test] |
| 206 | +async fn test_join_ungrouped_with_grouped_top1_and_filter() { |
| 207 | + if !Rewriter::sql_push_down_enabled() { |
| 208 | + return; |
| 209 | + } |
| 210 | + init_testing_logger(); |
| 211 | + |
| 212 | + let query_plan = convert_select_to_query_plan( |
| 213 | + // language=PostgreSQL |
| 214 | + r#" |
| 215 | +SELECT |
| 216 | + KibanaSampleDataEcommerce.customer_gender AS customer_gender, |
| 217 | + AVG(KibanaSampleDataEcommerce.avgPrice) AS price |
| 218 | +FROM |
| 219 | + KibanaSampleDataEcommerce |
| 220 | +INNER JOIN ( |
| 221 | + SELECT |
| 222 | + customer_gender, |
| 223 | + AVG(avgPrice) as avg_price |
| 224 | + FROM |
| 225 | + KibanaSampleDataEcommerce |
| 226 | + WHERE |
| 227 | + notes = 'foo' |
| 228 | + GROUP BY 1 |
| 229 | + ORDER BY 2 DESC NULLS LAST |
| 230 | + LIMIT 1 |
| 231 | +) kibana_grouped |
| 232 | +ON ( |
| 233 | + KibanaSampleDataEcommerce.customer_gender = kibana_grouped.customer_gender |
| 234 | +) |
| 235 | +GROUP BY 1 |
| 236 | +; |
| 237 | + "# |
| 238 | + .to_string(), |
| 239 | + DatabaseProtocol::PostgreSQL, |
| 240 | + ) |
| 241 | + .await; |
| 242 | + |
| 243 | + let physical_plan = query_plan.as_physical_plan().await.unwrap(); |
| 244 | + println!( |
| 245 | + "Physical plan: {}", |
| 246 | + displayable(physical_plan.as_ref()).indent() |
| 247 | + ); |
| 248 | + |
| 249 | + let request = query_plan |
| 250 | + .as_logical_plan() |
| 251 | + .find_cube_scan_wrapped_sql() |
| 252 | + .request; |
| 253 | + |
| 254 | + assert_eq!(request.subquery_joins.as_ref().unwrap().len(), 1); |
| 255 | + |
| 256 | + let subquery = &request.subquery_joins.unwrap()[0]; |
| 257 | + |
| 258 | + assert!(!subquery.sql.contains("ungrouped")); |
| 259 | + let re = Regex::new( |
| 260 | + r#""order":\s*\[\s*\[\s*"KibanaSampleDataEcommerce.avgPrice",\s*"desc"\s*\]\s*\]"#, |
| 261 | + ) |
| 262 | + .unwrap(); |
| 263 | + assert!(re.is_match(&subquery.sql)); |
| 264 | + assert!(subquery.sql.contains(r#""limit": 1"#)); |
| 265 | + assert_eq!(subquery.join_type, "INNER"); |
| 266 | + assert!(subquery.on.contains( |
| 267 | + r#"${KibanaSampleDataEcommerce.customer_gender} = \"kibana_grouped\".\"customer_gender\""# |
| 268 | + )); |
| 269 | + |
| 270 | + // Measure from top aggregation |
| 271 | + assert!(query_plan |
| 272 | + .as_logical_plan() |
| 273 | + .find_cube_scan_wrapped_sql() |
| 274 | + .wrapped_sql |
| 275 | + .sql |
| 276 | + .contains(r#"\"expr\":\"${KibanaSampleDataEcommerce.avgPrice}\""#)); |
| 277 | +} |
| 278 | + |
| 279 | +#[tokio::test] |
| 280 | +async fn test_superset_topk() { |
| 281 | + if !Rewriter::sql_push_down_enabled() { |
| 282 | + return; |
| 283 | + } |
| 284 | + init_testing_logger(); |
| 285 | + |
| 286 | + let query_plan = convert_select_to_query_plan( |
| 287 | + // language=PostgreSQL |
| 288 | + r#" |
| 289 | +SELECT DATE_TRUNC('week', order_date) AS __timestamp, |
| 290 | + MEASURE(KibanaSampleDataEcommerce.avgPrice) AS avgPrice |
| 291 | +FROM KibanaSampleDataEcommerce |
| 292 | +JOIN |
| 293 | + (SELECT customer_gender AS customer_gender__, |
| 294 | + MEASURE(KibanaSampleDataEcommerce.avgPrice) AS mme_inner__ |
| 295 | + FROM KibanaSampleDataEcommerce |
| 296 | + WHERE order_date >= TO_TIMESTAMP('2022-09-16 00:00:00.000000', 'YYYY-MM-DD HH24:MI:SS.US') |
| 297 | + AND order_date < TO_TIMESTAMP('2024-09-16 00:00:00.000000', 'YYYY-MM-DD HH24:MI:SS.US') |
| 298 | + GROUP BY customer_gender |
| 299 | + ORDER BY mme_inner__ DESC |
| 300 | + LIMIT 20) AS anon_1 ON customer_gender = customer_gender__ |
| 301 | +-- filters here are not supported without filter flattening in wrapper |
| 302 | +-- TODO enable it when ready |
| 303 | +-- WHERE order_date >= TO_TIMESTAMP('2022-09-16 00:00:00.000000', 'YYYY-MM-DD HH24:MI:SS.US') |
| 304 | +-- AND order_date < TO_TIMESTAMP('2024-09-16 00:00:00.000000', 'YYYY-MM-DD HH24:MI:SS.US') |
| 305 | +GROUP BY DATE_TRUNC('week', order_date) |
| 306 | +ORDER BY avgPrice DESC |
| 307 | +LIMIT 1000 |
| 308 | +; |
| 309 | + "# |
| 310 | + .to_string(), |
| 311 | + DatabaseProtocol::PostgreSQL, |
| 312 | + ) |
| 313 | + .await; |
| 314 | + |
| 315 | + let physical_plan = query_plan.as_physical_plan().await.unwrap(); |
| 316 | + println!( |
| 317 | + "Physical plan: {}", |
| 318 | + displayable(physical_plan.as_ref()).indent() |
| 319 | + ); |
| 320 | + |
| 321 | + let wrapped_sql_node = query_plan.as_logical_plan().find_cube_scan_wrapped_sql(); |
| 322 | + |
| 323 | + assert_eq!( |
| 324 | + wrapped_sql_node |
| 325 | + .request |
| 326 | + .subquery_joins |
| 327 | + .as_ref() |
| 328 | + .unwrap() |
| 329 | + .len(), |
| 330 | + 1 |
| 331 | + ); |
| 332 | + |
| 333 | + let subquery = &wrapped_sql_node.request.subquery_joins.unwrap()[0]; |
| 334 | + |
| 335 | + assert!(!subquery.sql.contains("ungrouped")); |
| 336 | + let re = Regex::new( |
| 337 | + r#""order":\s*\[\s*\[\s*"KibanaSampleDataEcommerce.avgPrice",\s*"desc"\s*\]\s*\]"#, |
| 338 | + ) |
| 339 | + .unwrap(); |
| 340 | + assert!(re.is_match(&subquery.sql)); |
| 341 | + assert!(subquery.sql.contains(r#""limit": 20"#)); |
| 342 | + assert_eq!(subquery.join_type, "INNER"); |
| 343 | + assert!(subquery.on.contains( |
| 344 | + r#"${KibanaSampleDataEcommerce.customer_gender} = \"anon_1\".\"customer_gender_\""# |
| 345 | + )); |
| 346 | + |
| 347 | + // Measure from top aggregation |
| 348 | + assert!(wrapped_sql_node |
| 349 | + .wrapped_sql |
| 350 | + .sql |
| 351 | + .contains(r#"\"expr\":\"${KibanaSampleDataEcommerce.avgPrice}\""#)); |
| 352 | + |
| 353 | + // Outer sort |
| 354 | + assert!(wrapped_sql_node |
| 355 | + .wrapped_sql |
| 356 | + .sql |
| 357 | + .contains(r#"ORDER BY "KibanaSampleDataEcommerce"."measure_kibanasa" DESC NULLS FIRST"#)); |
| 358 | + |
| 359 | + // Outer limit |
| 360 | + assert!(wrapped_sql_node.wrapped_sql.sql.contains("LIMIT 1000")); |
| 361 | +} |
0 commit comments