@@ -40,7 +40,13 @@ def eval_model(self):
4040 self ._model = self ._model .fit (x , y )
4141 else :
4242 self ._model .fit (x , y )
43- compute_binary_metrics (self ._model , test_data , self .get_model_metrics_folder ())
43+
44+ compute_binary_metrics (
45+ self ._model ,
46+ test_data ,
47+ self .get_model_metrics_folder (),
48+ evaluation_model_folder = self .get_model_test_prediction_folder (),
49+ )
4450 else :
4551 for train , test in self .k_fold (features = (inputs , age , person_ids ), labels = labels ):
4652 x , y = train
@@ -50,7 +56,12 @@ def eval_model(self):
5056 else :
5157 self ._model .fit (x , y )
5258
53- compute_binary_metrics (self ._model , test , self .get_model_metrics_folder ())
59+ compute_binary_metrics (
60+ self ._model ,
61+ test ,
62+ self .get_model_metrics_folder (),
63+ evaluation_model_folder = self .get_model_test_prediction_folder (),
64+ )
5465
5566 def get_model_name (self ):
5667 return type (self ._model ).__name__
@@ -130,7 +141,7 @@ def _create_model(self, *args, **kwargs):
130141 param_grid = [
131142 {
132143 "classifier" : [LogisticRegression ()],
133- "classifier__penalty" : ["l1" , " l2" ],
144+ "classifier__penalty" : ["l2" ],
134145 "classifier__C" : np .logspace (- 4 , 4 , 20 ),
135146 "classifier__solver" : ["lbfgs" ],
136147 "classifier__max_iter" : [2000 ],
0 commit comments