@@ -1396,9 +1396,9 @@ def _latex_(self) -> str:
13961396 return self .hasse_diagram ()._latex_ ()
13971397
13981398 def tikz (self , format = None , edge_labels = False , color_by_label = False ,
1399- prog = 'dot' , rankdir = 'up' , standalone_config = None ,
1400- usepackage = None , usetikzlibrary = None , macros = None ,
1401- use_sage_preamble = None , ** kwds ):
1399+ prog = 'dot' , rankdir = 'up' , standalone_config = None ,
1400+ usepackage = None , usetikzlibrary = None , macros = None ,
1401+ use_sage_preamble = None , ** kwds ):
14021402 r"""
14031403 Return a TikzPicture illustrating the poset.
14041404
@@ -1460,10 +1460,10 @@ def tikz(self, format=None, edge_labels=False, color_by_label=False,
14601460 """
14611461 G = self .hasse_diagram ()
14621462 return G .tikz (format = format , edge_labels = edge_labels ,
1463- color_by_label = color_by_label , prog = prog , rankdir = rankdir ,
1464- standalone_config = standalone_config , usepackage = usepackage ,
1465- usetikzlibrary = usetikzlibrary , macros = macros ,
1466- use_sage_preamble = use_sage_preamble , ** kwds )
1463+ color_by_label = color_by_label , prog = prog , rankdir = rankdir ,
1464+ standalone_config = standalone_config , usepackage = usepackage ,
1465+ usetikzlibrary = usetikzlibrary , macros = macros ,
1466+ use_sage_preamble = use_sage_preamble , ** kwds )
14671467
14681468 def _repr_ (self ) -> str :
14691469 r"""
@@ -3596,8 +3596,8 @@ def dimension(self, certificate=False, *, solver=None, integrality_tolerance=1e-
35963596
35973597 ALGORITHM:
35983598
3599- As explained [FT00]_, the dimension of a poset is equal to the (weak)
3600- chromatic number of a hypergraph. More precisely:
3599+ As explained in [FT00]_, the dimension of a poset is equal to
3600+ the (weak) chromatic number of a hypergraph. More precisely:
36013601
36023602 Let `inc(P)` be the set of (ordered) pairs of incomparable elements
36033603 of `P`, i.e. all `uv` and `vu` such that `u\not \leq_P v` and `v\not
@@ -7776,13 +7776,17 @@ def chain_polynomial(self):
77767776 elements in the poset. List of coefficients of this polynomial
77777777 is also called a *f-vector* of the poset.
77787778
7779+ This is multiplicative with respect to ordinal sum.
7780+
77797781 .. NOTE::
77807782
77817783 This is not what has been called the chain polynomial
77827784 in [St1986]_. The latter is identical with the order
77837785 polynomial in SageMath (:meth:`order_polynomial`).
77847786
7785- .. SEEALSO:: :meth:`f_polynomial`, :meth:`order_polynomial`
7787+ .. SEEALSO::
7788+
7789+ :meth:`f_polynomial`, :meth:`order_polynomial`, :meth:`ordinal_sum`
77867790
77877791 EXAMPLES::
77887792
0 commit comments