@@ -142,7 +142,7 @@ def __init__(self, polys):
142142 vars = R .variable_names ()
143143 A = ProductProjectiveSpaces ([2 , 2 ],R .base_ring (),vars )
144144 CR = A .coordinate_ring ()
145- #Check for following:
145+ # Check for following:
146146 # Is the user calling in 2 polynomials from a list or tuple?
147147 # Is there one biquadratic and one bilinear polynomial?
148148 if len (polys ) != 2 :
@@ -411,7 +411,7 @@ def Hpoly(self, component, i, j):
411411 sage: X.Hpoly(0, 1, 0)
412412 2*y0*y1^3 + 2*y0*y1*y2^2 - y1*y2^3
413413 """
414- #Check Errors in Passed in Values
414+ # Check Errors in Passed in Values
415415 if component not in [0 , 1 ]:
416416 raise ValueError ("component can only be 1 or 0" )
417417
@@ -751,7 +751,7 @@ def is_degenerate(self) -> bool:
751751 PP = self .ambient_space ()
752752 K = FractionField (PP [0 ].base_ring ())
753753 R = PP .coordinate_ring ()
754- PS = PP [0 ] # check for x fibers
754+ PS = PP [0 ] # check for x fibers
755755 vars = list (PS .gens ())
756756 R0 = PolynomialRing (K , 3 , vars ) #for dimension calculation to work,
757757 #must be done with Polynomial ring over a field
@@ -763,7 +763,7 @@ def is_degenerate(self) -> bool:
763763 if I .dimension () != 0 :
764764 return True
765765
766- PS = PP [1 ] # check for y fibers
766+ PS = PP [1 ] # check for y fibers
767767 vars = list (PS .gens ())
768768 R0 = PolynomialRing (K ,3 ,vars ) #for dimension calculation to work,
769769 #must be done with Polynomial ring over a field
@@ -840,7 +840,7 @@ def degenerate_fibers(self):
840840 phi = R .hom (vars + [0 , 0 , 0 ], R0 )
841841 I = phi (I )
842842 xFibers = []
843- #check affine charts
843+ # check affine charts
844844 for n in range (3 ):
845845 affvars = list (R0 .gens ())
846846 del affvars [n ]
@@ -871,7 +871,7 @@ def degenerate_fibers(self):
871871 phi = PP .coordinate_ring ().hom ([0 , 0 , 0 ] + vars , R0 )
872872 I = phi (I )
873873 yFibers = []
874- #check affine charts
874+ # check affine charts
875875 for n in range (3 ):
876876 affvars = list (R0 .gens ())
877877 del affvars [n ]
@@ -898,7 +898,7 @@ def degenerate_fibers(self):
898898 @cached_method
899899 def degenerate_primes (self , check = True ):
900900 r"""
901- Determine which primes `p` ``self`` has degenerate fibers over `\GF{p}`.
901+ Determine primes `p` such that ``self`` has degenerate fibers over `\GF{p}`.
902902
903903 If ``check`` is ``False``, then may return primes that do not have degenerate fibers.
904904 Raises an error if the surface is degenerate.
@@ -995,7 +995,7 @@ def degenerate_primes(self, check=True):
995995 if power == 1 :
996996 bad_primes = bad_primes + GB [i ].lt ().coefficients ()[0 ].support ()
997997 bad_primes = sorted (set (bad_primes ))
998- #check to return only the truly bad primes
998+ # check to return only the truly bad primes
999999 if check :
10001000 for p in bad_primes :
10011001 X = self .change_ring (GF (p ))
@@ -1041,7 +1041,7 @@ def is_smooth(self) -> bool:
10411041 R = self .ambient_space ().coordinate_ring ()
10421042 I = R .ideal (M .minors (2 ) + [self .L ,self .Q ])
10431043 T = PolynomialRing (self .ambient_space ().base_ring ().fraction_field (), 4 , 'h' )
1044- #check the 9 affine charts for a singular point
1044+ # check the 9 affine charts for a singular point
10451045 for l in xmrange ([3 , 3 ]):
10461046 vars = list (T .gens ())
10471047 vars .insert (l [0 ], 1 )
@@ -1577,7 +1577,7 @@ def phi(self, a, **kwds):
15771577 (-1 : 0 : 1 , 0 : 1 : 0)
15781578 """
15791579 A = self .sigmaX (a , ** kwds )
1580- kwds .update ({"check" :False })
1580+ kwds .update ({"check" : False })
15811581 return self .sigmaY (A , ** kwds )
15821582
15831583 def psi (self , a , ** kwds ):
@@ -1617,7 +1617,7 @@ def psi(self, a, **kwds):
16171617 (0 : 0 : 1 , 0 : 1 : 0)
16181618 """
16191619 A = self .sigmaY (a , ** kwds )
1620- kwds .update ({"check" :False })
1620+ kwds .update ({"check" : False })
16211621 return self .sigmaX (A , ** kwds )
16221622
16231623 def lambda_plus (self , P , v , N , m , n , prec = 100 ):
@@ -2413,7 +2413,7 @@ def orbit_psi(self, P, N, **kwds):
24132413
24142414 def is_isomorphic (self , right ) -> bool :
24152415 r"""
2416- Check to see if two K3 surfaces have the same defining ideal.
2416+ Check whether two K3 surfaces have the same defining ideal.
24172417
24182418 INPUT:
24192419
@@ -2451,7 +2451,7 @@ def is_isomorphic(self, right) -> bool:
24512451
24522452 def is_symmetric_orbit (self , orbit ) -> bool :
24532453 r"""
2454- Check to see if the orbit is symmetric.
2454+ Check whether the orbit is symmetric.
24552455
24562456 This means that one of the points on the
24572457 orbit is fixed by '\sigma_x' or '\sigma_y'.
0 commit comments