@@ -1349,7 +1349,7 @@ def ngens(self):
13491349 """
13501350 return len (self .gens ())
13511351
1352- def is_trivial (self ):
1352+ def is_trivial (self ) -> bool :
13531353 r"""
13541354 Return ``True`` if this group is the trivial group.
13551355
@@ -4215,7 +4215,7 @@ def maximal_normal_subgroups(self):
42154215
42164216 # ##################### Boolean tests #####################
42174217
4218- def is_abelian (self ):
4218+ def is_abelian (self ) -> bool :
42194219 """
42204220 Return ``True`` if this group is abelian.
42214221
@@ -4230,7 +4230,7 @@ def is_abelian(self):
42304230 """
42314231 return bool (self ._libgap_ ().IsAbelian ())
42324232
4233- def is_commutative (self ):
4233+ def is_commutative (self ) -> bool :
42344234 """
42354235 Return ``True`` if this group is commutative.
42364236
@@ -4245,7 +4245,7 @@ def is_commutative(self):
42454245 """
42464246 return self .is_abelian ()
42474247
4248- def is_cyclic (self ):
4248+ def is_cyclic (self ) -> bool :
42494249 """
42504250 Return ``True`` if this group is cyclic.
42514251
@@ -4357,7 +4357,7 @@ def is_isomorphic(self, right):
43574357 iso = self ._libgap_ ().IsomorphismGroups (right )
43584358 return str (iso ) != 'fail'
43594359
4360- def is_monomial (self ):
4360+ def is_monomial (self ) -> bool :
43614361 """
43624362 Return ``True`` if the group is monomial. A finite group is monomial
43634363 if every irreducible complex character is induced from a linear
@@ -4371,7 +4371,7 @@ def is_monomial(self):
43714371 """
43724372 return bool (self ._libgap_ ().IsMonomialGroup ())
43734373
4374- def is_nilpotent (self ):
4374+ def is_nilpotent (self ) -> bool :
43754375 """
43764376 Return ``True`` if this group is nilpotent.
43774377
@@ -4386,7 +4386,7 @@ def is_nilpotent(self):
43864386 """
43874387 return bool (self ._libgap_ ().IsNilpotent ())
43884388
4389- def is_normal (self , other ):
4389+ def is_normal (self , other ) -> bool :
43904390 """
43914391 Return ``True`` if this group is a normal subgroup of ``other``.
43924392
@@ -4403,7 +4403,7 @@ def is_normal(self, other):
44034403 raise TypeError ("%s must be a subgroup of %s" % (self , other ))
44044404 return bool (other ._libgap_ ().IsNormal (self ))
44054405
4406- def is_perfect (self ):
4406+ def is_perfect (self ) -> bool :
44074407 """
44084408 Return ``True`` if this group is perfect. A group is perfect if it
44094409 equals its derived subgroup.
@@ -4419,7 +4419,7 @@ def is_perfect(self):
44194419 """
44204420 return bool (self ._libgap_ ().IsPerfectGroup ())
44214421
4422- def is_pgroup (self ):
4422+ def is_pgroup (self ) -> bools :
44234423 r"""
44244424 Return ``True`` if this group is a `p`-group.
44254425
@@ -4434,7 +4434,7 @@ def is_pgroup(self):
44344434 """
44354435 return bool (self ._libgap_ ().IsPGroup ())
44364436
4437- def is_polycyclic (self ):
4437+ def is_polycyclic (self ) -> bool :
44384438 r"""
44394439 Return ``True`` if this group is polycyclic. A group is polycyclic if
44404440 it has a subnormal series with cyclic factors. (For finite groups,
@@ -4452,7 +4452,7 @@ def is_polycyclic(self):
44524452 """
44534453 return bool (self ._libgap_ ().IsPolycyclicGroup ())
44544454
4455- def is_simple (self ):
4455+ def is_simple (self ) -> bool :
44564456 """
44574457 Return ``True`` if the group is simple.
44584458
0 commit comments