|
| 1 | +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +""" |
| 15 | +pip install pillow |
| 16 | +
|
| 17 | +# Tested on 8x H100 GPUs |
| 18 | +accelerate launch |
| 19 | + --config_file=examples/accelerate_configs/deepspeed_zero3.yaml \ |
| 20 | + sft_vlm_smol_vlm.py \ |
| 21 | + --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ |
| 22 | + --model_name_or_path HuggingFaceTB/SmolVLM-Instruct \ |
| 23 | + --per_device_train_batch_size 1 \ |
| 24 | + --gradient_accumulation_steps 1 \ |
| 25 | + --output_dir sft-smol-vlm-hf \ |
| 26 | + --bf16 \ |
| 27 | + --torch_dtype bfloat16 \ |
| 28 | + --gradient_checkpointing \ |
| 29 | + --use_peft \ |
| 30 | + --lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj |
| 31 | +
|
| 32 | +For LLaVA-NeXT, use: (requires transformers>=4.45) |
| 33 | + --model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf |
| 34 | +
|
| 35 | +For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1) |
| 36 | + --model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct |
| 37 | +""" |
| 38 | + |
| 39 | +import torch |
| 40 | +from datasets import load_dataset |
| 41 | +from transformers import ( |
| 42 | + AutoModelForVision2Seq, |
| 43 | + AutoProcessor, |
| 44 | + Idefics3ForConditionalGeneration, |
| 45 | + LlavaForConditionalGeneration, |
| 46 | +) |
| 47 | + |
| 48 | +from trl import ( |
| 49 | + ModelConfig, |
| 50 | + ScriptArguments, |
| 51 | + SFTConfig, |
| 52 | + SFTTrainer, |
| 53 | + TrlParser, |
| 54 | + get_kbit_device_map, |
| 55 | + get_peft_config, |
| 56 | + get_quantization_config, |
| 57 | +) |
| 58 | + |
| 59 | + |
| 60 | +if __name__ == "__main__": |
| 61 | + parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) |
| 62 | + script_args, training_args, model_config = parser.parse_args_and_config() |
| 63 | + training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) |
| 64 | + training_args.remove_unused_columns = False |
| 65 | + training_args.dataset_kwargs = {"skip_prepare_dataset": True} |
| 66 | + |
| 67 | + ################ |
| 68 | + # Model, Tokenizer & Processor |
| 69 | + ################ |
| 70 | + torch_dtype = ( |
| 71 | + model_config.torch_dtype |
| 72 | + if model_config.torch_dtype in ["auto", None] |
| 73 | + else getattr(torch, model_config.torch_dtype) |
| 74 | + ) |
| 75 | + quantization_config = get_quantization_config(model_config) |
| 76 | + model_kwargs = dict( |
| 77 | + revision=model_config.model_revision, |
| 78 | + attn_implementation=model_config.attn_implementation, |
| 79 | + torch_dtype=torch_dtype, |
| 80 | + device_map=get_kbit_device_map() if quantization_config is not None else None, |
| 81 | + quantization_config=quantization_config, |
| 82 | + ) |
| 83 | + processor = AutoProcessor.from_pretrained( |
| 84 | + model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code |
| 85 | + ) |
| 86 | + |
| 87 | + model = AutoModelForVision2Seq.from_pretrained( |
| 88 | + model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs |
| 89 | + ) |
| 90 | + |
| 91 | + ################ |
| 92 | + # Create a data collator to encode text and image pairs |
| 93 | + ################ |
| 94 | + def collate_fn(examples): |
| 95 | + # Get the texts and images, and apply the chat template |
| 96 | + texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] |
| 97 | + images = [example["images"] for example in examples] |
| 98 | + if isinstance(model, LlavaForConditionalGeneration): |
| 99 | + # LLava1.5 does not support multiple images |
| 100 | + images = [image[0] for image in images] |
| 101 | + |
| 102 | + # Tokenize the texts and process the images |
| 103 | + batch = processor(text=texts, images=images, return_tensors="pt", padding=True) |
| 104 | + |
| 105 | + # The labels are the input_ids, and we mask the padding tokens in the loss computation |
| 106 | + labels = batch["input_ids"].clone() |
| 107 | + labels[labels == processor.tokenizer.pad_token_id] = -100 # |
| 108 | + # Ignore the image token index in the loss computation (model specific) |
| 109 | + if isinstance(model, Idefics3ForConditionalGeneration): |
| 110 | + image_token_id = processor.tokenizer.additional_special_tokens_ids[ |
| 111 | + processor.tokenizer.additional_special_tokens.index("<image>") |
| 112 | + ] |
| 113 | + else: |
| 114 | + image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token) |
| 115 | + labels[labels == image_token_id] = -100 |
| 116 | + batch["labels"] = labels |
| 117 | + |
| 118 | + return batch |
| 119 | + |
| 120 | + ################ |
| 121 | + # Dataset |
| 122 | + ################ |
| 123 | + dataset = load_dataset(script_args.dataset_name) |
| 124 | + |
| 125 | + ################ |
| 126 | + # Training |
| 127 | + ################ |
| 128 | + trainer = SFTTrainer( |
| 129 | + model=model, |
| 130 | + args=training_args, |
| 131 | + data_collator=collate_fn, |
| 132 | + train_dataset=dataset[script_args.dataset_train_split], |
| 133 | + eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, |
| 134 | + processing_class=processor.tokenizer, |
| 135 | + peft_config=get_peft_config(model_config), |
| 136 | + ) |
| 137 | + |
| 138 | + trainer.train() |
| 139 | + |
| 140 | + # Save and push to hub |
| 141 | + trainer.save_model(training_args.output_dir) |
| 142 | + if training_args.push_to_hub: |
| 143 | + trainer.push_to_hub(dataset_name=script_args.dataset_name) |
| 144 | + if trainer.accelerator.is_main_process: |
| 145 | + processor.push_to_hub(training_args.hub_model_id) |
0 commit comments