Skip to content

question about test #35

@zhengbowei

Description

@zhengbowei

Dear author:
Thanks for your re-implementation, it's helpful! Now I have a little question for you:
In the training phase, the training image will be scaled to 256*256, the code in dataset.py is:
if self.random_crop:
imgw, imgh = img.size
if imgh < self.image_shape[0] or imgw < self.image_shape[1]:
img = transforms.Resize(min(self.image_shape))(img)
img = transforms.RandomCrop(self.image_shape)(img)
else:
img = transforms.Resize(self.image_shape)(img)
img = transforms.RandomCrop(self.image_shape)(img)

In the testing phase, the testing image will be scaled to 256*256, the code in test_single.py is:
x = transforms.Resize(config['image_shape'][:-1])(x)
x = transforms.CenterCrop(config['image_shape'][:-1])(x)
mask = transforms.Resize(config['image_shape'][:-1])(mask)
mask = transforms.CenterCrop(config['image_shape'][:-1])(mask)

The scaling standards are the same between them?
Thank you for your answer。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions