|
| 1 | +// RUN: %dafny /compile:0 "%s" > "%t" |
| 2 | +// RUN: %diff "%s.expect" "%t" |
| 3 | + |
| 4 | +/******************************************************************************* |
| 5 | +* Original: Copyright (c) 2020 Secure Foundations Lab |
| 6 | +* SPDX-License-Identifier: MIT |
| 7 | +* |
| 8 | +* Modifications and Extensions: Copyright by the contributors to the Dafny Project |
| 9 | +* SPDX-License-Identifier: MIT |
| 10 | +*******************************************************************************/ |
| 11 | + |
| 12 | +include "../../Wrappers.dfy" |
| 13 | +include "../../Action.dfy" |
| 14 | +include "Seq.dfy" |
| 15 | + |
| 16 | +module Actions { |
| 17 | + import opened Wrappers |
| 18 | + import opened A = Action |
| 19 | + import opened Seq |
| 20 | + |
| 21 | + method Map<A, R>( |
| 22 | + action: Action<A, R>, |
| 23 | + s: seq<A> |
| 24 | + ) |
| 25 | + returns (res: seq<R>) |
| 26 | + requires forall i | i in s :: action.Requires(i) |
| 27 | + ensures |s| == |res| |
| 28 | + ensures |
| 29 | + forall i :: |
| 30 | + && 0 <= i < |s| |
| 31 | + ==> |
| 32 | + action.Ensures(s[i], res[i]) |
| 33 | + { |
| 34 | + var rs := []; |
| 35 | + for i := 0 to |s| |
| 36 | + invariant |s[..i]| == |rs| |
| 37 | + invariant forall j :: |
| 38 | + && 0 <= j < i |
| 39 | + ==> |
| 40 | + action.Ensures(s[j], rs[j]) |
| 41 | + { |
| 42 | + var r := action.Invoke(s[i]); |
| 43 | + rs := rs + [r]; |
| 44 | + } |
| 45 | + return rs; |
| 46 | + } |
| 47 | + |
| 48 | + method MapWithResult<A, R, E>( |
| 49 | + action: Action<A, Result<R, E>>, |
| 50 | + s: seq<A> |
| 51 | + ) |
| 52 | + returns (res: Result<seq<R>, E>) |
| 53 | + requires forall i | i in s :: action.Requires(i) |
| 54 | + ensures |
| 55 | + res.Success? |
| 56 | + ==> |
| 57 | + |s| == |res.value| |
| 58 | + ensures |
| 59 | + res.Success? |
| 60 | + ==> |
| 61 | + (forall i :: |
| 62 | + && 0 <= i < |s| |
| 63 | + ==> |
| 64 | + action.Ensures(s[i], Success(res.value[i]))) |
| 65 | + { |
| 66 | + var rs := []; |
| 67 | + for i := 0 to |s| |
| 68 | + invariant |s[..i]| == |rs| |
| 69 | + invariant forall j :: |
| 70 | + && 0 <= j < i |
| 71 | + ==> |
| 72 | + action.Ensures(s[j], Success(rs[j])) |
| 73 | + { |
| 74 | + var maybeR := action.Invoke(s[i]); |
| 75 | + if maybeR.Failure? { |
| 76 | + return Failure(maybeR.error); |
| 77 | + } |
| 78 | + var r := maybeR.value; |
| 79 | + rs := rs + [r]; |
| 80 | + } |
| 81 | + return Success(rs); |
| 82 | + } |
| 83 | + |
| 84 | + method FlatMap<A, R>( |
| 85 | + action: Action<A, seq<R>>, |
| 86 | + s: seq<A> |
| 87 | + ) |
| 88 | + // The ghost parts is returned to facilitate |
| 89 | + // threading proof obligations. |
| 90 | + // Idealy, it would be great to remove this |
| 91 | + // and simply prove everything about `res`. |
| 92 | + // However in practice this has proven to be difficult. |
| 93 | + // Given how flexible FlatMap is, |
| 94 | + // there may not be a prcatical general solution. |
| 95 | + returns (res: seq<R>, ghost parts: seq<seq<R>>) |
| 96 | + requires forall i | i in s :: action.Requires(i) |
| 97 | + ensures |
| 98 | + && |s| == |parts| |
| 99 | + && res == Flatten(parts) |
| 100 | + && (forall i :: 0 <= i < |s| |
| 101 | + ==> |
| 102 | + && action.Ensures(s[i], parts[i]) |
| 103 | + && multiset(parts[i]) <= multiset(res)) |
| 104 | + { |
| 105 | + parts := []; |
| 106 | + var rs := []; |
| 107 | + for i := 0 to |s| |
| 108 | + invariant |s[..i]| == |parts| |
| 109 | + invariant forall j :: |
| 110 | + && 0 <= j < i |
| 111 | + ==> |
| 112 | + && action.Ensures(s[j], parts[j]) |
| 113 | + && multiset(parts[j]) <= multiset(rs) |
| 114 | + invariant Flatten(parts) == rs |
| 115 | + { |
| 116 | + var r := action.Invoke(s[i]); |
| 117 | + rs := rs + r; |
| 118 | + LemmaFlattenConcat(parts, [r]); |
| 119 | + parts := parts + [r]; |
| 120 | + } |
| 121 | + return rs, parts; |
| 122 | + } |
| 123 | + |
| 124 | + method FlatMapWithResult<A, R, E>( |
| 125 | + action: Action<A, Result<seq<R>, E>>, |
| 126 | + s: seq<A> |
| 127 | + ) |
| 128 | + // The ghost parts is returned to facilitate |
| 129 | + // threading proof obligations. |
| 130 | + // Idealy, it would be great to remove this |
| 131 | + // and simply prove everything about `res`. |
| 132 | + // However in practice this has proven to be difficult. |
| 133 | + // Given how flexible FlatMap is, |
| 134 | + // there may not be a prcatical general solution. |
| 135 | + returns (res: Result<seq<R>, E>, ghost parts: seq<seq<R>>) |
| 136 | + requires forall i | i in s :: action.Requires(i) |
| 137 | + ensures |
| 138 | + res.Success? |
| 139 | + ==> |
| 140 | + && |s| == |parts| |
| 141 | + && res.value == Flatten(parts) |
| 142 | + && (forall i :: 0 <= i < |s| |
| 143 | + ==> |
| 144 | + && action.Ensures(s[i], Success(parts[i])) |
| 145 | + && multiset(parts[i]) <= multiset(res.value) |
| 146 | + ) |
| 147 | + { |
| 148 | + parts := []; |
| 149 | + var rs := []; |
| 150 | + for i := 0 to |s| |
| 151 | + invariant |s[..i]| == |parts| |
| 152 | + invariant forall j :: |
| 153 | + && 0 <= j < i |
| 154 | + ==> |
| 155 | + && action.Ensures(s[j], Success(parts[j])) |
| 156 | + && multiset(parts[j]) <= multiset(rs) |
| 157 | + invariant Flatten(parts) == rs |
| 158 | + { |
| 159 | + var maybeR := action.Invoke(s[i]); |
| 160 | + if maybeR.Failure? { |
| 161 | + return Failure(maybeR.error), parts; |
| 162 | + } |
| 163 | + var r := maybeR.value; |
| 164 | + rs := rs + r; |
| 165 | + LemmaFlattenConcat(parts, [r]); |
| 166 | + parts := parts + [r]; |
| 167 | + } |
| 168 | + return Success(rs), parts; |
| 169 | + } |
| 170 | + |
| 171 | + method Filter<A>( |
| 172 | + action: Action<A, bool>, |
| 173 | + s: seq<A> |
| 174 | + ) |
| 175 | + returns (res: seq<A>) |
| 176 | + requires forall i | i in s :: action.Requires(i) |
| 177 | + ensures |s| >= |res| |
| 178 | + ensures |
| 179 | + forall j :: |
| 180 | + j in res |
| 181 | + ==> |
| 182 | + && j in s |
| 183 | + && action.Ensures(j, true) |
| 184 | + { |
| 185 | + var rs := []; |
| 186 | + for i := 0 to |s| |
| 187 | + invariant |s[..i]| >= |rs| |
| 188 | + invariant forall j :: |
| 189 | + j in rs |
| 190 | + ==> |
| 191 | + && j in s |
| 192 | + && action.Ensures(j, true) |
| 193 | + { |
| 194 | + var r := action.Invoke(s[i]); |
| 195 | + if r { |
| 196 | + rs := rs + [s[i]]; |
| 197 | + } |
| 198 | + } |
| 199 | + return rs; |
| 200 | + } |
| 201 | + |
| 202 | + method FilterWithResult<A, E>( |
| 203 | + action: Action<A, Result<bool, E>>, |
| 204 | + s: seq<A> |
| 205 | + ) |
| 206 | + returns (res: Result<seq<A>, E>) |
| 207 | + requires forall i | i in s :: action.Requires(i) |
| 208 | + ensures |
| 209 | + res.Success? |
| 210 | + ==> |
| 211 | + && |s| >= |res.value| |
| 212 | + && forall j :: |
| 213 | + j in res.value |
| 214 | + ==> |
| 215 | + && j in s |
| 216 | + && action.Ensures(j, Success(true)) |
| 217 | + { |
| 218 | + var rs := []; |
| 219 | + for i := 0 to |s| |
| 220 | + invariant |s[..i]| >= |rs| |
| 221 | + invariant forall j :: |
| 222 | + j in rs |
| 223 | + ==> |
| 224 | + && j in s |
| 225 | + && action.Ensures(j, Success(true)) |
| 226 | + { |
| 227 | + var maybeR := action.Invoke(s[i]); |
| 228 | + if maybeR.Failure? { |
| 229 | + return Failure(maybeR.error); |
| 230 | + } |
| 231 | + var r := maybeR.value; |
| 232 | + if r { |
| 233 | + rs := rs + [s[i]]; |
| 234 | + } |
| 235 | + } |
| 236 | + return Success(rs); |
| 237 | + } |
| 238 | + |
| 239 | + method ReduceToSuccess<A, B, E>( |
| 240 | + action: Action<A, Result<B, E>>, |
| 241 | + s: seq<A> |
| 242 | + ) |
| 243 | + returns (res: Result<B, seq<E>>) |
| 244 | + requires forall i | i in s :: action.Requires(i) |
| 245 | + ensures |
| 246 | + res.Success? |
| 247 | + ==> |
| 248 | + exists a | a in s :: action.Ensures(a, Success(res.value)) |
| 249 | + { |
| 250 | + var errors := []; |
| 251 | + for i := 0 to |s| { |
| 252 | + var attempt := action.Invoke(s[i]); |
| 253 | + if attempt.Success? { |
| 254 | + return Success(attempt.value); |
| 255 | + } else { |
| 256 | + errors := errors + [attempt.error]; |
| 257 | + } |
| 258 | + } |
| 259 | + return Failure(errors); |
| 260 | + } |
| 261 | +} |
0 commit comments