@@ -529,10 +529,10 @@ and compress the vectors by adding the left and the right halves
529529separated by the variable \\ (u\_ k\\ ):
530530\\ [
531531\begin{aligned}
532- {\mathbf{a}}^{(k-1)} &= {\mathbf{a}}\_ L \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{a}}\_ R \\\\
533- {\mathbf{b}}^{(k-1)} &= {\mathbf{b}}\_ L \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{b}}\_ R \\\\
534- {\mathbf{G}}^{(k-1)} &= {\mathbf{G}}\_ L \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{G}}\_ R \\\\
535- {\mathbf{H}}^{(k-1)} &= {\mathbf{H}}\_ L \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{H}}\_ R
532+ {\mathbf{a}}^{(k-1)} &= {\mathbf{a}}\_ {\operatorname{lo}} \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{a}}\_ {\operatorname{hi}} \\\\
533+ {\mathbf{b}}^{(k-1)} &= {\mathbf{b}}\_ {\operatorname{lo}} \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{b}}\_ {\operatorname{hi}} \\\\
534+ {\mathbf{G}}^{(k-1)} &= {\mathbf{G}}\_ {\operatorname{lo}} \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{G}}\_ {\operatorname{hi}} \\\\
535+ {\mathbf{H}}^{(k-1)} &= {\mathbf{H}}\_ {\operatorname{lo}} \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{H}}\_ {\operatorname{hi}}
536536\end{aligned}
537537\\ ]
538538The powers of \\ (u\_ k\\ ) are chosen so they cancel out in the
@@ -546,17 +546,17 @@ Expanding it in terms of the original \\({\mathbf{a}}\\), \\({\mathbf{b}}\\),
546546\\ ({\mathbf{G}}\\ ) and \\ ({\mathbf{H}}\\ ) gives:
547547\\ [
548548\begin{aligned}
549- P\_ {k-1} &{}={}& &{\langle {\mathbf{a}}\_ L \cdot u\_ k + u\_ k^{-1} \cdot {\mathbf{a}}\_ R , {\mathbf{G}}\_ L \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{G}}\_ R \rangle} + \\\\
550- && &{\langle {\mathbf{b}}\_ L \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{b}}\_ R , {\mathbf{H}}\_ L \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{H}}\_ R \rangle} + \\\\
551- && &{\langle {\mathbf{a}}\_ L \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{a}}\_ R , {\mathbf{b}}\_ L \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{b}}\_ R \rangle} \cdot Q
549+ P\_ {k-1} &{}={}& &{\langle {\mathbf{a}}\_ {\operatorname{lo}} \cdot u\_ k + u\_ k^{-1} \cdot {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{G}}\_ {\operatorname{lo}} \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{G}}\_ {\operatorname{hi}} \rangle} + \\\\
550+ && &{\langle {\mathbf{b}}\_ {\operatorname{lo}} \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{b}}\_ {\operatorname{hi}} , {\mathbf{H}}\_ {\operatorname{lo}} \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{H}}\_ {\operatorname{hi}} \rangle} + \\\\
551+ && &{\langle {\mathbf{a}}\_ {\operatorname{lo}} \cdot u\_ k + u^{-1}\_ k \cdot {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{b}}\_ {\operatorname{lo}} \cdot u^{-1}\_ k + u\_ k \cdot {\mathbf{b}}\_ {\operatorname{hi}} \rangle} \cdot Q
552552\end{aligned}
553553\\ ]
554554Breaking down in simpler products:
555555\\ [
556556\begin{aligned}
557- P\_ {k-1} &{}={}& &{\langle {\mathbf{a}}\_ L , {\mathbf{G}}\_ L \rangle} + {\langle {\mathbf{a}}\_ R , {\mathbf{G}}\_ R \rangle} &{}+{}& u\_ k^2 {\langle {\mathbf{a}}\_ L , {\mathbf{G}}\_ R \rangle} + u^{-2}\_ k {\langle {\mathbf{a}}\_ R , {\mathbf{G}}\_ L \rangle} + \\\\
558- && &{\langle {\mathbf{b}}\_ L , {\mathbf{H}}\_ L \rangle} + {\langle {\mathbf{b}}\_ R , {\mathbf{H}}\_ R \rangle} &{}+{}& u^2\_ k {\langle {\mathbf{b}}\_ R , {\mathbf{H}}\_ L \rangle} + u^{-2}\_ k {\langle {\mathbf{b}}\_ L , {\mathbf{H}}\_ R \rangle} + \\\\
559- && &({\langle {\mathbf{a}}\_ L , {\mathbf{b}}\_ L \rangle} + {\langle {\mathbf{a}}\_ R , {\mathbf{b}}\_ R \rangle})\cdot Q &{}+{}& (u^2\_ k {\langle {\mathbf{a}}\_ L , {\mathbf{b}}\_ R \rangle} + u^{-2}\_ k {\langle {\mathbf{a}}\_ R , {\mathbf{b}}\_ L \rangle}) \cdot Q
557+ P\_ {k-1} &{}={}& &{\langle {\mathbf{a}}\_ {\operatorname{lo}} , {\mathbf{G}}\_ {\operatorname{lo}} \rangle} + {\langle {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{G}}\_ {\operatorname{hi}} \rangle} &{}+{}& u\_ k^2 {\langle {\mathbf{a}}\_ {\operatorname{lo}} , {\mathbf{G}}\_ {\operatorname{hi}} \rangle} + u^{-2}\_ k {\langle {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{G}}\_ {\operatorname{lo}} \rangle} + \\\\
558+ && &{\langle {\mathbf{b}}\_ {\operatorname{lo}} , {\mathbf{H}}\_ {\operatorname{lo}} \rangle} + {\langle {\mathbf{b}}\_ {\operatorname{hi}} , {\mathbf{H}}\_ {\operatorname{hi}} \rangle} &{}+{}& u^2\_ k {\langle {\mathbf{b}}\_ {\operatorname{hi}} , {\mathbf{H}}\_ {\operatorname{lo}} \rangle} + u^{-2}\_ k {\langle {\mathbf{b}}\_ {\operatorname{lo}} , {\mathbf{H}}\_ {\operatorname{hi}} \rangle} + \\\\
559+ && &({\langle {\mathbf{a}}\_ {\operatorname{lo}} , {\mathbf{b}}\_ {\operatorname{lo}} \rangle} + {\langle {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{b}}\_ {\operatorname{hi}} \rangle})\cdot Q &{}+{}& (u^2\_ k {\langle {\mathbf{a}}\_ {\operatorname{lo}} , {\mathbf{b}}\_ {\operatorname{hi}} \rangle} + u^{-2}\_ k {\langle {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{b}}\_ {\operatorname{lo}} \rangle}) \cdot Q
560560\end{aligned}
561561\\ ]
562562We now see that the left two columns in the above equation is the
@@ -566,8 +566,8 @@ terms with \\(u^2\_k\\) as \\(L\_k\\) and all terms with \\(u^{-2}\_k\\) as \\(R
566566\\ [
567567\begin{aligned}
568568 P\_ {k-1} &= P\_ k + u^2\_ k \cdot L\_ k + u^{-2}\_ k \cdot R\_ k\\\\
569- L\_ k &= {\langle {\mathbf{a}}\_ L , {\mathbf{G}}\_ R \rangle} + {\langle {\mathbf{b}}\_ R , {\mathbf{H}}\_ L \rangle} + {\langle {\mathbf{a}}\_ L , {\mathbf{b}}\_ R \rangle} \cdot Q\\\\
570- R\_ k &= {\langle {\mathbf{a}}\_ R , {\mathbf{G}}\_ L \rangle} + {\langle {\mathbf{b}}\_ L , {\mathbf{H}}\_ R \rangle} + {\langle {\mathbf{a}}\_ R , {\mathbf{b}}\_ L \rangle} \cdot Q
569+ L\_ k &= {\langle {\mathbf{a}}\_ {\operatorname{lo}} , {\mathbf{G}}\_ {\operatorname{hi}} \rangle} + {\langle {\mathbf{b}}\_ {\operatorname{hi}} , {\mathbf{H}}\_ {\operatorname{lo}} \rangle} + {\langle {\mathbf{a}}\_ {\operatorname{lo}} , {\mathbf{b}}\_ {\operatorname{hi}} \rangle} \cdot Q\\\\
570+ R\_ k &= {\langle {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{G}}\_ {\operatorname{lo}} \rangle} + {\langle {\mathbf{b}}\_ {\operatorname{lo}} , {\mathbf{H}}\_ {\operatorname{hi}} \rangle} + {\langle {\mathbf{a}}\_ {\operatorname{hi}} , {\mathbf{b}}\_ {\operatorname{lo}} \rangle} \cdot Q
571571\end{aligned}
572572\\ ]
573573If the prover commits to \\ (L\_ k\\ ) and \\ (R\_ k\\ ) before \\ (u\_ k\\ ) is randomly
0 commit comments