@@ -1552,6 +1552,32 @@ static bool llm_load_tensors(
15521552 layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
15531553 }
15541554 } break;
1555+ case LLM_ARCH_COHERE2:
1556+ {
1557+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
1558+
1559+ // output
1560+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
1561+ // init output from the input tok embed
1562+ model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
1563+ llama_model_loader::TENSOR_DUPLICATED);
1564+
1565+ for (int i = 0; i < n_layer; ++i) {
1566+ auto & layer = model.layers[i];
1567+
1568+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
1569+
1570+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
1571+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
1572+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
1573+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
1574+
1575+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
1576+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
1577+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
1578+ }
1579+ }
1580+ break;
15551581 case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
15561582 {
15571583 model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -7633,6 +7659,137 @@ struct llm_build_context {
76337659
76347660 }
76357661
7662+ struct ggml_cgraph * build_cohere2() {
7663+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
7664+
7665+ const int64_t n_embd_head = hparams.n_embd_head_v;
7666+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7667+ const float f_logit_scale = hparams.f_logit_scale;
7668+
7669+ struct ggml_tensor * cur;
7670+ struct ggml_tensor * inpL;
7671+
7672+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
7673+
7674+ // inp_pos - contains the positions
7675+ struct ggml_tensor * inp_pos = build_inp_pos();
7676+
7677+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
7678+ // cohere2 requires different mask for layers using sliding window (SWA)
7679+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
7680+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
7681+
7682+ // sliding window switch pattern
7683+ const int32_t sliding_window_pattern = 4;
7684+
7685+ for (int il = 0; il < n_layer; ++il) {
7686+ // three layers sliding window attention (window size 4096) and ROPE
7687+ // fourth layer uses global attention without positional embeddings
7688+ const bool is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1);
7689+ struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask;
7690+
7691+ // norm
7692+ cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM, cb, il);
7693+ cb(cur, "attn_norm", il);
7694+ struct ggml_tensor * ffn_inp = cur;
7695+
7696+ // self-attention
7697+ {
7698+ // rope freq factors for 128k context
7699+ struct ggml_tensor * rope_factors = build_rope_factors(il);
7700+
7701+ // compute Q and K and RoPE them
7702+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
7703+ cb(Qcur, "Qcur", il);
7704+ if (model.layers[il].bq) {
7705+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
7706+ cb(Qcur, "Qcur", il);
7707+ }
7708+
7709+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
7710+ cb(Kcur, "Kcur", il);
7711+ if (model.layers[il].bk) {
7712+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
7713+ cb(Kcur, "Kcur", il);
7714+ }
7715+
7716+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
7717+ cb(Vcur, "Vcur", il);
7718+ if (model.layers[il].bv) {
7719+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
7720+ cb(Vcur, "Vcur", il);
7721+ }
7722+
7723+ if (is_sliding) {
7724+ Qcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
7725+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor,
7726+ beta_fast, beta_slow);
7727+ cb(Qcur, "Qcur", il);
7728+
7729+ Kcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
7730+ rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
7731+ attn_factor, beta_fast, beta_slow);
7732+ cb(Kcur, "Kcur", il);
7733+ } else {
7734+ // For non-sliding layers, just reshape without applying RoPE
7735+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
7736+ cb(Qcur, "Qcur", il);
7737+
7738+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
7739+ cb(Kcur, "Kcur", il);
7740+ }
7741+
7742+ cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur,
7743+ KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f / sqrtf(float(n_embd_head)), cb, il);
7744+ }
7745+
7746+ if (il == n_layer - 1) {
7747+ // skip computing output for unused tokens
7748+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
7749+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
7750+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
7751+ ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
7752+ }
7753+
7754+ struct ggml_tensor * attn_out = cur;
7755+
7756+ // feed-forward network
7757+ {
7758+ cur = llm_build_ffn(ctx0, lctx, ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
7759+ NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
7760+ cb, il);
7761+ cb(cur, "ffn_out", il);
7762+ }
7763+
7764+ // add together residual + FFN + self-attention
7765+ cur = ggml_add(ctx0, cur, inpL);
7766+ cur = ggml_add(ctx0, cur, attn_out);
7767+ cur = lctx.cvec.apply_to(ctx0, cur, il);
7768+ cb(cur, "l_out", il);
7769+
7770+ // input for next layer
7771+ inpL = cur;
7772+ }
7773+
7774+ cur = inpL;
7775+
7776+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM, cb, -1);
7777+ cb(cur, "result_norm", -1);
7778+
7779+ // lm_head
7780+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
7781+
7782+ if (f_logit_scale) {
7783+ cur = ggml_scale(ctx0, cur, f_logit_scale);
7784+ }
7785+
7786+ cb(cur, "result_output", -1);
7787+
7788+ ggml_build_forward_expand(gf, cur);
7789+
7790+ return gf;
7791+ }
7792+
76367793 // ref: https://allenai.org/olmo
76377794 // based on the original build_llama() function, changes:
76387795 // * non-parametric layer norm
@@ -10384,6 +10541,10 @@ static struct ggml_cgraph * llama_build_graph(
1038410541 {
1038510542 result = llm.build_command_r();
1038610543 } break;
10544+ case LLM_ARCH_COHERE2:
10545+ {
10546+ result = llm.build_cohere2();
10547+ } break;
1038710548 case LLM_ARCH_DBRX:
1038810549 {
1038910550 result = llm.build_dbrx();
0 commit comments