Skip to content

Commit 3035052

Browse files
committed
Rebase
1 parent 0535df2 commit 3035052

File tree

1 file changed

+107
-120
lines changed

1 file changed

+107
-120
lines changed

specification/dartLangSpec.tex

Lines changed: 107 additions & 120 deletions
Original file line numberDiff line numberDiff line change
@@ -22087,43 +22087,41 @@ \subsection{Subtypes}
2208722087
}
2208822088

2208922089
\LMHash{}%
22090-
%% TODO(eernst): Introduce these specialized intersection types
22091-
%% in a suitable location where type promotion is specified.
22092-
Types of the form
22093-
\IndexCustom{$X \& S$}{type!of the form $X \& S$}%
22094-
\IndexExtraEntry{\&@$X \& S$}
22095-
arise during static analysis due to type promotion
22090+
Intersection types
22091+
(\commentary{types of the form \code{$X$\,\&\,$S$}}),
22092+
may arise during static analysis due to type promotion
2209622093
(\ref{typePromotion}).
2209722094
They never occur during execution,
22098-
they are never a type argument of another type,
22099-
nor a return type or a formal parameter type,
22100-
and it is always the case that $S$ is a subtype of the bound of $X$.
22101-
\commentary{%
22102-
The motivation for $X \& S$ is that it represents
22103-
the type of a local variable $v$
22104-
whose type is declared to be the type variable $X$,
22105-
and which is known to have type $S$ due to promotion.
22106-
Similarly, $X \& S$ may be seen as an intersection type,
22107-
which is a subtype of $X$ and also a subtype of $S$.
22108-
Intersection types are \emph{not} supported in general,
22109-
only in this special case.%
22110-
}
22111-
Every other form of type may occur during static analysis
22112-
as well as during execution,
22113-
and the subtype relationship is always determined in the same way.
22095+
and there are many other restrictions on where they can occur
22096+
(\ref{intersectionTypes}).
22097+
However, their subtype relations are specified without restrictions.
22098+
\commentary{%
22099+
It causes no problems that these rules will not be used
22100+
in their full generality.%
22101+
}
2211422102

22103+
!!! Renumber!
2211522104
% Subtype Rule Numbering
2211622105
\newcommand{\SrnReflexivity}{1}
22117-
\newcommand{\SrnTop}{2}
22118-
\newcommand{\SrnBottom}{3}
22119-
\newcommand{\SrnNull}{4}
22120-
\newcommand{\SrnLeftTypeAlias}{5}
22121-
\newcommand{\SrnRightTypeAlias}{6}
22106+
\newcommand{\SrnRightTop}{2}
22107+
\newcommand{\SrnLeftTop}{3}
22108+
\newcommand{\SrnBottom}{4}
22109+
\newcommand{\SrnRightObjectOne}{5.1}
22110+
\newcommand{\SrnRightObjectTwo}{5.2}
22111+
\newcommand{\SrnRightObjectThree}{5.3}
22112+
\newcommand{\SrnRightObjectFour}{5.4}
22113+
\newcommand{\SrnNullOne}{6.1}
22114+
\newcommand{\SrnNullTwo}{6.2}
2212222115
\newcommand{\SrnLeftFutureOr}{7}
22116+
\newcommand{\SrnLeftNullable}{7b}
2212322117
\newcommand{\SrnTypeVariableReflexivityA}{8}
2212422118
\newcommand{\SrnRightPromotedVariable}{9}
2212522119
\newcommand{\SrnRightFutureOrA}{10}
2212622120
\newcommand{\SrnRightFutureOrB}{11}
22121+
\newcommand{\SrnRightNullableOne}{11b.1}
22122+
\newcommand{\SrnRightNullableTwo}{11b.2}
22123+
\newcommand{\SrnRightNullableThree}{11b.3}
22124+
\newcommand{\SrnRightNullableFour}{11b.4}
2212722125
\newcommand{\SrnLeftPromotedVariable}{12}
2212822126
\newcommand{\SrnLeftVariableBound}{13}
2212922127
\newcommand{\SrnRightFunction}{14}
@@ -22144,34 +22142,47 @@ \subsection{Subtypes}
2214422142
\def\RuleRawRaw#1#2#3#4{\centerline{\inference[#1]{#3}{#4}}\VSP}
2214522143
%
2214622144
\begin{minipage}[c]{0.49\textwidth}
22147-
\Axiom{\SrnReflexivity}{Reflexivity}{S}{S}
22148-
\Axiom{\SrnBottom}{Left Bottom}{\bot}{T}
22145+
\Axiom{\SrnReflexivity}{Reflexivity}{T}{T}
22146+
\Axiom{\SrnBottom}{Left Bottom}{\code{Never}}{T}
22147+
\RuleRaw{\SrnRightObjectTwo}{Right Object 2}{%
22148+
\SubtypeStd{S}{\code{Object}}}{\code{$X$\,\&\,$S$}}{\code{Object}}
22149+
\RuleRaw{\SrnRightObjectThree}{Right Object 3}{%
22150+
\SubtypeStd{S}{\code{Object}}}{\code{FutureOr<$S$>}}{\code{Object}}
22151+
\Axiom{\SrnNullOne}{Left Null One}{\code{Null}}{\code{$T$?}}
2214922152
\end{minipage}
2215022153
\begin{minipage}[c]{0.49\textwidth}
22151-
\RuleRaw{\SrnTop}{Right Top}{T \in \{\code{Object}, \DYNAMIC, \VOID\}}{S}{T}
22152-
\RuleRaw{\SrnNull}{Left Null}{T \not= \bot}{\code{Null}}{T}
22154+
\RuleRaw{\SrnRightTop}{Right Top}{%
22155+
T \in \{\code{Object?}, \DYNAMIC, \VOID\}}{S}{T}
22156+
\RuleRaw{\SrnLeftTop}{Left Top}{%
22157+
S \in \{\DYNAMIC, \VOID\} & \SubtypeStd{\code{Object?}}{T}}{S}{T}
22158+
\RuleRaw{\SrnRightObjectOne}{Right Object 1}{%
22159+
\code{$X$\,\EXTENDS\,$B$} & \SubtypeStd{B}{\code{Object}}%
22160+
}{X}{\code{Object}}
22161+
\RuleRaw{\SrnRightObjectFour}{Right Object 4}{%
22162+
$S$\,\not\in \{\code{Null}, \DYNAMIC, \VOID\}\\
22163+
\mbox{$S$ is not of the form \code{$U$?}, $X$, %
22164+
\code{$X$\,\&\,$U$}, \code{FutureOr<$U$>}}}{S}{\code{Object}}
22165+
\Rule{\SrnNullTwo}{Left Null Two}{\code{Null}}{T}{%
22166+
\code{Null}}{\code{FutureOr<$T$>}}
2215322167
\end{minipage}
2215422168

22155-
\ExtraVSP
22156-
\RuleRaw{\SrnLeftTypeAlias}{Type Alias Left}{%
22157-
\code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22158-
\SubtypeStd{[S_1/X_1,\ldots,S_s/X_s]U}{T}}{\code{$F$<\List{S}{1}{s}>}}{T}
22159-
\RuleRaw{\SrnRightTypeAlias}{Type Alias Right}{%
22160-
\code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22161-
\SubtypeStd{S}{[T_1/X_1,\ldots,T_s/X_s]U}}{S}{\code{$F$<\List{T}{1}{s}>}}
22162-
2216322169
\begin{minipage}[c]{0.49\textwidth}
2216422170
\RuleTwo{\SrnLeftFutureOr}{Left FutureOr}{S}{T}{%
2216522171
\code{Future<$S$>}}{T}{\code{FutureOr<$S$>}}{T}
2216622172
\RuleTwo{\SrnRightPromotedVariable}{Right Promoted Variable}{S}{X}{S}{T}{%
2216722173
S}{X \& T}
2216822174
\Rule{\SrnRightFutureOrB}{Right FutureOr B}{S}{T}{S}{\code{FutureOr<$T$>}}
22175+
\Rule{\SrnRightNullableTwo}{Right Nullable 2}{S}{\code{Null}}{S}{%
22176+
\code{$T$?}}
2216922177
\Rule{\SrnLeftVariableBound}{Left Variable Bound}{\Gamma(X)}{T}{X}{T}
2217022178
\end{minipage}
2217122179
\begin{minipage}[c]{0.49\textwidth}
22180+
\RuleTwo{\SrnLeftNullable}{Left Nullable}{S}{T}{\code{Null}}{T}{
22181+
\code{$S$?}}{T}
2217222182
\Axiom{\SrnTypeVariableReflexivityA}{Left Promoted Variable A}{X \& S}{X}
2217322183
\Rule{\SrnRightFutureOrA}{Right FutureOr A}{S}{\code{Future<$T$>}}{%
2217422184
S}{\code{FutureOr<$T$>}}
22185+
\Rule{\SrnRightNullableOne}{Right Nullable 1}{S}{T}{S}{\code{$T$?}}
2217522186
\Rule{\SrnLeftPromotedVariable}{Left Promoted Variable B}{S}{T}{X \& S}{T}
2217622187
\RuleRaw{\SrnRightFunction}{Right Function}{T\mbox{ is a function type}}{%
2217722188
T}{\FUNCTION}
@@ -22207,6 +22218,7 @@ \subsection{Subtypes}
2220722218
\forall j \in 1 .. s\!:\;\SubtypeStd{S_j}{T_j}}{%
2220822219
\code{$C$<\List{S}{1}{s}>}}{\code{$C$<\List{T}{1}{s}>}}
2220922220
\ExtraVSP
22221+
%% !!! Should include mixins (and other non-class interface types, if any).
2221022222
\RuleRaw{\SrnSuperinterface}{Superinterface}{%
2221122223
\code{\CLASS{} $C$<\TypeParametersNoBounds{X}{s}>\,\ldots\,\{\}}\\
2221222224
\Superinterface{\code{$D$<\List{T}{1}{m}>}}{C} &
@@ -22258,10 +22270,9 @@ \subsubsection{Subtype Rules}
2225822270
Whenever a rule contains one or more meta-variables,
2225922271
that rule can be used by
2226022272
\IndexCustom{instantiating}{instantiation!subtype rule}
22261-
it, that is, by consistently replacing
22262-
each occurrence of a given meta-variable by
22263-
concrete syntax denoting the same type
22264-
(\ref{typeType}).
22273+
it, that is, by choosing a specific type $T$ and metavariable $\cal V$,
22274+
and then consistently replacing all occurrences of $\cal V$ by
22275+
concrete syntax denoting $T$.
2226522276

2226622277
\commentary{%
2226722278
In general, this means that two or more occurrences of
@@ -22274,11 +22285,12 @@ \subsubsection{Subtype Rules}
2227422285
can be used to conclude
2227522286
\Subtype{\emptyset}{\code{int}}{\code{int}},
2227622287
where $\emptyset$ denotes the empty environment
22277-
(any environment would suffice because no type variables occur).
22288+
(any environment would suffice because no type variables occur).%
22289+
}
2227822290

22279-
However, the wording `denoting the same type' above covers
22280-
additional situations as well:
22281-
For instance, we may use rule~\SrnReflexivity{}
22291+
\commentary{%
22292+
The phrases `same type' and `identical syntax' deserves some extra scrutiny:
22293+
We may, e.g., use rule~\SrnReflexivity{}
2228222294
to show that \code{p1.C} is a subtype of
2228322295
\code{p2.C} when \code{C} is a class declared in a
2228422296
library $L$ which is imported by libraries $L_1$ and $L_2$ and
@@ -22307,8 +22319,27 @@ \subsubsection{Subtype Rules}
2230722319
}
2230822320

2230922321
\LMHash{}%
22310-
Every \synt{typeName} used in a type mentioned in this section is assumed to
22311-
have no compile-time error and denote a type.
22322+
In this section,
22323+
the notion of two types $T_1$ and $T_2$ being the same type
22324+
is taken to mean that $T_1$ and $T_2$ have the same canonical syntax
22325+
(\ref{standardUpperBoundsAndStandardLowerBounds}).
22326+
22327+
\commentary{%
22328+
In other words, we eliminate the difficulties associated with
22329+
different syntax denoting the same type,
22330+
and different types denoted by the same syntax,
22331+
by assuming that every type in the program has been expressed
22332+
in a manner where those situations never occur,
22333+
because each type is denoted by the same globally unique syntax everywhere.
22334+
Note that `same canonical syntax' also requires
22335+
transitive expansion of all type aliases
22336+
(\ref{typedef}).%
22337+
}
22338+
22339+
\LMHash{}%
22340+
Every \synt{typeName} used in a type mentioned in this section
22341+
is assumed to have no compile-time error,
22342+
and it is assumed to denote a type.
2231222343

2231322344
\commentary{%
2231422345
That is, no subtyping relationship can be proven for
@@ -22356,9 +22387,11 @@ \subsubsection{Subtype Rules}
2235622387
So
2235722388
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double} \} \uplus
2235822389
\{ \code{Z} \mapsto \code{Object} \} =
22359-
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, \code{Z} \mapsto \code{Object} \}$
22390+
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, %
22391+
\code{Z} \mapsto \code{Object} \}$
2236022392
and
22361-
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{FutureOr<List<double>{}>} \} \uplus
22393+
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto %
22394+
\code{FutureOr<List<double>{}>} \} \uplus
2236222395
\{ \code{Y} \mapsto \code{int} \} =
2236322396
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{int} \}$.
2236422397
Note that operator $\uplus$ is concerned with scopes and shadowing,
@@ -22408,28 +22441,6 @@ \subsubsection{Being a subtype}
2240822441
each of the premises of $R$,
2240922442
continuing until a rule with no premises is reached.
2241022443

22411-
\LMHash{}%
22412-
The first premise in the
22413-
rules~\SrnLeftTypeAlias{} and~\SrnRightTypeAlias{}
22414-
is a type alias declaration.
22415-
This premise is satisfied in each of the following situations:
22416-
22417-
\begin{itemize}
22418-
\item A non-generic type alias named $F$ is declared.
22419-
In this case $s$ is zero,
22420-
no assumptions are made about the existence
22421-
of any formal type parameters,
22422-
and actual type argument lists are omitted everywhere in the rule.
22423-
\item We may choose $s$ and \List{X}{1}{s} such that the following holds:
22424-
A generic type alias named $F$ is declared,
22425-
with formal type parameters \List{X}{1}{s}.
22426-
\commentary{%
22427-
Each formal type parameter $X_j$ may have a bound,
22428-
but the bounds are never used in this context,
22429-
so we do not introduce metavariables for them.%
22430-
}
22431-
\end{itemize}
22432-
2243322444
\LMHash{}%
2243422445
Rule~\SrnRightFunction{} has as a premise that `$T$ is a function type'.
2243522446
This means that $T$ is a type of one of the forms introduced in
@@ -22538,7 +22549,7 @@ \subsubsection{Informal Subtype Rule Descriptions}
2253822549
the rule is also valid in any environment
2253922550
and the environment is never used explicitly,
2254022551
so we will not repeat that.
22541-
\Item{\SrnTop}{Top}
22552+
\Item{\SrnRightTop}{Top}
2254222553
Every type is a subtype of \code{Object},
2254322554
every type is a subtype of \DYNAMIC,
2254422555
and every type is a subtype of \VOID.
@@ -22550,19 +22561,11 @@ \subsubsection{Informal Subtype Rule Descriptions}
2255022561
(\ref{superBoundedTypes}).
2255122562
\Item{\SrnBottom}{Bottom}
2255222563
Every type is a supertype of $\bot$.
22553-
\Item{\SrnNull}{Null}
22554-
Every type other than $\bot$ is a supertype of \code{Null}.
22555-
\Item{\SrnLeftTypeAlias}{Type Alias Left}
22556-
An application of a type alias to some actual type arguments is
22557-
a subtype of another type $T$
22558-
if the expansion of the type alias to the type that it denotes
22559-
is a subtype of $T$.
22560-
Note that a non-generic type alias is handled by letting $s = 0$.
22561-
\Item{\SrnRightTypeAlias}{Type Alias Right}
22562-
A type $S$ is a subtype of an application of a type alias
22563-
if $S$ is a subtype of
22564-
the expansion of the type alias to the type that it denotes.
22565-
Note that a non-generic type alias is handled by letting $s = 0$.
22564+
\Item{\SrnNullOne}{Null 1}
22565+
\code{Null} is a subtype of every type of the form \code{$T$?}.
22566+
\Item{\SrnNullTwo}{Null 2}
22567+
\code{Null} is a subtype of \code{FutureOr<$T$>}
22568+
if \code{Null} is a subtype of $T$.
2256622569
\Item{\SrnLeftFutureOr}{Left FutureOr}
2256722570
The type \code{FutureOr<$S$>} is a subtype of a given type $T$
2256822571
if $S$ is a subtype of $T$ and \code{Future<$S$>} is a subtype of $T$,
@@ -23031,11 +23034,10 @@ \subsection{Type Normalization}
2303123034
(such as \code{Never} and $X$).
2303223035

2303323036
In particular, \SubtypeNE{S}{T} and \SubtypeNE{T}{S} holds if and only if
23034-
\NormalizedTypeOf{$T$} is syntactically equal to \NormalizedTypeOf{$S$},
23035-
modulo replacement of atomic top types,
23036-
and modulo replacement of terms derived from \synt{typeName}
23037-
denoting the same type
23038-
(such as \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
23037+
\NormalizedTypeOf{$T$} has the same canonical syntax as \NormalizedTypeOf{$S$}
23038+
(\ref{standardUpperBoundsAndStandardLowerBounds}),
23039+
modulo replacement of atomic top types
23040+
(e.g., \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
2303923041
}
2304023042

2304123043
\LMHash{}%
@@ -23243,8 +23245,8 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2324323245
}
2324423246

2324523247
\LMHash{}%
23246-
Consequently, when we say that two types $T_1$ and $T_2$ are
23247-
\IndexCustom{syntactically equal}{type!syntactically equal},
23248+
Consequently, when we say that two types $T_1$ and $T_2$ have the
23249+
\IndexCustom{same canonical syntax}{type!same canonical syntax},
2324823250
it refers to the situation where both $T_1$ and $T_2$ have been
2324923251
transformed in the above sense
2325023252
(\commentary{by alpha-renaming, alias expansion, and canonical naming}).
@@ -23478,7 +23480,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2347823480
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
2347923481

2348023482
\noindent
23481-
such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types,
23483+
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax,
2348223484
and both have the same number of required positional parameters.
2348323485
Let $q$ be $\metavar{min}(k, l)$,
2348423486
let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
@@ -23508,7 +23510,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2350823510
and consider the case where the following is satisfied:
2350923511

2351023512
\begin{itemize}
23511-
\item Each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23513+
\item Each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2351223514
\item For each required entry named $n$ in $\metavar{Named}_1$,
2351323515
$\metavar{Named}_2$ contains an entry named $n$
2351423516
(\commentary{which may or may not be required}).
@@ -23733,7 +23735,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2373323735
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
2373423736

2373523737
\noindent
23736-
such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23738+
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2373723739
Let $q$ be $\metavar{max}(k, l)$,
2373823740
let $T_3$ be \LowerBoundType{$T_1$}{$T_2$},
2373923741
let $B_{3i}$ be $B_{1i}$, and
@@ -23770,7 +23772,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2377023772
where $\metavar{Named}_j$ declares a non-empty set of named parameters
2377123773
with names $\metavar{NamesOfNamed}_j$, $j \in 1 .. 2$,
2377223774
and consider the case where
23773-
each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23775+
each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2377423776
Then \DefEqualsNewline{\LowerBoundType{$U_1$}{$U_2$}}{%U_3}, where $U_3$ is
2377523777
\code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
2377623778
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\,$P_{3k}$,\,$\metavar{Named}_3$)}},
@@ -24314,9 +24316,10 @@ \subsection{Intersection Types}
2431424316

2431524317
\commentary{%
2431624318
An intersection type will never occur as a nested type, that is,
24317-
it will never occurs as
24319+
it never occurs as or in
2431824320
an actual type argument in a parameterized type,
24319-
as a parameter type or a return type in a function type,
24321+
a parameter type or a return type in a function type,
24322+
a type parameter bound,
2432024323
as the right operand of another intersection type,
2432124324
or as the operand of the nullable type operator \lit{?}.%
2432224325
}
@@ -24477,24 +24480,8 @@ \subsection{Type Type}
2447724480
and let $S_j$ be \NormalizedTypeOf{$U_j$}, for $j \in 1 .. 2$
2447824481
(\ref{typeNormalization}).
2447924482
We then say that $T_1$ and $T_2$ are the \Index{same type}
24480-
if{}f $S_1$ and $S_2$ are syntactically equal,
24481-
up to equivalence of bound variables,
24482-
and up to replacement of identifiers or qualified identifiers
24483-
resolving to the same type declaration
24484-
(\commentary{%
24485-
e.g., \code{C} and \code{prefix.C} could resolve to
24486-
the same class declaration%
24487-
}),
24488-
and excluding the case where two identifiers or qualified identifiers
24489-
occurring at corresponding positions in $S_1$ and $S_2$
24490-
are syntactically identical,
24491-
but resolve to different declarations
24492-
(\commentary{%
24493-
e.g., one occurrence of \code{C} could resolve to a
24494-
class declaration imported from a library $L_1$,
24495-
and another occurrence of \code{C} could resolve to a
24496-
class declaration imported from a different library $L_2$%
24497-
}).
24483+
if{}f $S_1$ and $S_2$ are have the same canonical syntax
24484+
(\ref{standardUpperBoundsAndStandardLowerBounds}).
2449824485

2449924486
\LMHash{}%
2450024487
A reified type identifies the underlying type in the sense that
@@ -25903,7 +25890,7 @@ \section*{Appendix: Algorithmic Subtyping}
2590325890
\end{minipage}
2590425891
%
2590525892
\caption{Algorithmic subtype rules.
25906-
Rules \SrnTop--\SrnSuperinterface{} are unchanged and hence omitted here.}
25893+
Rules \SrnRightTop--\SrnSuperinterface{} are unchanged and hence omitted here.}
2590725894
\label{fig:algorithmicSubtypeRules}
2590825895
\end{figure}
2590925896

@@ -25964,7 +25951,7 @@ \section*{Appendix: Algorithmic Subtyping}
2596425951
followed by the rule whose number is $N+1$.
2596525952
\commentary{%
2596625953
So the order is
25967-
\AppSrnReflexivity, \SrnTop--\SrnTypeVariableReflexivityA,
25954+
\AppSrnReflexivity, \SrnRightTop--\SrnTypeVariableReflexivityA,
2596825955
\AppSrnTypeVariableReflexivityB, \AppSrnTypeVariableReflexivityC,
2596925956
\AppSrnTypeVariableReflexivityD,
2597025957
\SrnRightPromotedVariable, and so on.%

0 commit comments

Comments
 (0)