@@ -21958,43 +21958,41 @@ \subsection{Subtypes}
21958
21958
}
21959
21959
21960
21960
\LMHash{}%
21961
- %% TODO(eernst): Introduce these specialized intersection types
21962
- %% in a suitable location where type promotion is specified.
21963
- Types of the form
21964
- \IndexCustom{$X \& S$}{type!of the form $X \& S$}%
21965
- \IndexExtraEntry{\&@$X \& S$}
21966
- arise during static analysis due to type promotion
21961
+ Intersection types
21962
+ (\commentary{types of the form \code{$X$\,\&\,$S$}}),
21963
+ may arise during static analysis due to type promotion
21967
21964
(\ref{typePromotion}).
21968
21965
They never occur during execution,
21969
- they are never a type argument of another type,
21970
- nor a return type or a formal parameter type,
21971
- and it is always the case that $S$ is a subtype of the bound of $X$.
21972
- \commentary{%
21973
- The motivation for $X \& S$ is that it represents
21974
- the type of a local variable $v$
21975
- whose type is declared to be the type variable $X$,
21976
- and which is known to have type $S$ due to promotion.
21977
- Similarly, $X \& S$ may be seen as an intersection type,
21978
- which is a subtype of $X$ and also a subtype of $S$.
21979
- Intersection types are \emph{not} supported in general,
21980
- only in this special case.%
21981
- }
21982
- Every other form of type may occur during static analysis
21983
- as well as during execution,
21984
- and the subtype relationship is always determined in the same way.
21966
+ and there are many other restrictions on where they can occur
21967
+ (\ref{intersectionTypes}).
21968
+ However, their subtype relations are specified without restrictions.
21969
+ \commentary{%
21970
+ It causes no problems that these rules will not be used
21971
+ in their full generality.%
21972
+ }
21985
21973
21974
+ !!! Renumber!
21986
21975
% Subtype Rule Numbering
21987
21976
\newcommand{\SrnReflexivity}{1}
21988
- \newcommand{\SrnTop}{2}
21989
- \newcommand{\SrnBottom}{3}
21990
- \newcommand{\SrnNull}{4}
21991
- \newcommand{\SrnLeftTypeAlias}{5}
21992
- \newcommand{\SrnRightTypeAlias}{6}
21977
+ \newcommand{\SrnRightTop}{2}
21978
+ \newcommand{\SrnLeftTop}{3}
21979
+ \newcommand{\SrnBottom}{4}
21980
+ \newcommand{\SrnRightObjectOne}{5.1}
21981
+ \newcommand{\SrnRightObjectTwo}{5.2}
21982
+ \newcommand{\SrnRightObjectThree}{5.3}
21983
+ \newcommand{\SrnRightObjectFour}{5.4}
21984
+ \newcommand{\SrnNullOne}{6.1}
21985
+ \newcommand{\SrnNullTwo}{6.2}
21993
21986
\newcommand{\SrnLeftFutureOr}{7}
21987
+ \newcommand{\SrnLeftNullable}{7b}
21994
21988
\newcommand{\SrnTypeVariableReflexivityA}{8}
21995
21989
\newcommand{\SrnRightPromotedVariable}{9}
21996
21990
\newcommand{\SrnRightFutureOrA}{10}
21997
21991
\newcommand{\SrnRightFutureOrB}{11}
21992
+ \newcommand{\SrnRightNullableOne}{11b.1}
21993
+ \newcommand{\SrnRightNullableTwo}{11b.2}
21994
+ \newcommand{\SrnRightNullableThree}{11b.3}
21995
+ \newcommand{\SrnRightNullableFour}{11b.4}
21998
21996
\newcommand{\SrnLeftPromotedVariable}{12}
21999
21997
\newcommand{\SrnLeftVariableBound}{13}
22000
21998
\newcommand{\SrnRightFunction}{14}
@@ -22015,34 +22013,47 @@ \subsection{Subtypes}
22015
22013
\def\RuleRawRaw#1#2#3#4{\centerline{\inference[#1]{#3}{#4}}\VSP}
22016
22014
%
22017
22015
\begin{minipage}[c]{0.49\textwidth}
22018
- \Axiom{\SrnReflexivity}{Reflexivity}{S}{S}
22019
- \Axiom{\SrnBottom}{Left Bottom}{\bot}{T}
22016
+ \Axiom{\SrnReflexivity}{Reflexivity}{T}{T}
22017
+ \Axiom{\SrnBottom}{Left Bottom}{\code{Never}}{T}
22018
+ \RuleRaw{\SrnRightObjectTwo}{Right Object 2}{%
22019
+ \SubtypeStd{S}{\code{Object}}}{\code{$X$\,\&\,$S$}}{\code{Object}}
22020
+ \RuleRaw{\SrnRightObjectThree}{Right Object 3}{%
22021
+ \SubtypeStd{S}{\code{Object}}}{\code{FutureOr<$S$>}}{\code{Object}}
22022
+ \Axiom{\SrnNullOne}{Left Null One}{\code{Null}}{\code{$T$?}}
22020
22023
\end{minipage}
22021
22024
\begin{minipage}[c]{0.49\textwidth}
22022
- \RuleRaw{\SrnTop}{Right Top}{T \in \{\code{Object}, \DYNAMIC, \VOID\}}{S}{T}
22023
- \RuleRaw{\SrnNull}{Left Null}{T \not= \bot}{\code{Null}}{T}
22025
+ \RuleRaw{\SrnRightTop}{Right Top}{%
22026
+ T \in \{\code{Object?}, \DYNAMIC, \VOID\}}{S}{T}
22027
+ \RuleRaw{\SrnLeftTop}{Left Top}{%
22028
+ S \in \{\DYNAMIC, \VOID\} & \SubtypeStd{\code{Object?}}{T}}{S}{T}
22029
+ \RuleRaw{\SrnRightObjectOne}{Right Object 1}{%
22030
+ \code{$X$\,\EXTENDS\,$B$} & \SubtypeStd{B}{\code{Object}}%
22031
+ }{X}{\code{Object}}
22032
+ \RuleRaw{\SrnRightObjectFour}{Right Object 4}{%
22033
+ $S$\,\not\in \{\code{Null}, \DYNAMIC, \VOID\}\\
22034
+ \mbox{$S$ is not of the form \code{$U$?}, $X$, %
22035
+ \code{$X$\,\&\,$U$}, \code{FutureOr<$U$>}}}{S}{\code{Object}}
22036
+ \Rule{\SrnNullTwo}{Left Null Two}{\code{Null}}{T}{%
22037
+ \code{Null}}{\code{FutureOr<$T$>}}
22024
22038
\end{minipage}
22025
22039
22026
- \ExtraVSP
22027
- \RuleRaw{\SrnLeftTypeAlias}{Type Alias Left}{%
22028
- \code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22029
- \SubtypeStd{[S_1/X_1,\ldots,S_s/X_s]U}{T}}{\code{$F$<\List{S}{1}{s}>}}{T}
22030
- \RuleRaw{\SrnRightTypeAlias}{Type Alias Right}{%
22031
- \code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22032
- \SubtypeStd{S}{[T_1/X_1,\ldots,T_s/X_s]U}}{S}{\code{$F$<\List{T}{1}{s}>}}
22033
-
22034
22040
\begin{minipage}[c]{0.49\textwidth}
22035
22041
\RuleTwo{\SrnLeftFutureOr}{Left FutureOr}{S}{T}{%
22036
22042
\code{Future<$S$>}}{T}{\code{FutureOr<$S$>}}{T}
22037
22043
\RuleTwo{\SrnRightPromotedVariable}{Right Promoted Variable}{S}{X}{S}{T}{%
22038
22044
S}{X \& T}
22039
22045
\Rule{\SrnRightFutureOrB}{Right FutureOr B}{S}{T}{S}{\code{FutureOr<$T$>}}
22046
+ \Rule{\SrnRightNullableTwo}{Right Nullable 2}{S}{\code{Null}}{S}{%
22047
+ \code{$T$?}}
22040
22048
\Rule{\SrnLeftVariableBound}{Left Variable Bound}{\Gamma(X)}{T}{X}{T}
22041
22049
\end{minipage}
22042
22050
\begin{minipage}[c]{0.49\textwidth}
22051
+ \RuleTwo{\SrnLeftNullable}{Left Nullable}{S}{T}{\code{Null}}{T}{
22052
+ \code{$S$?}}{T}
22043
22053
\Axiom{\SrnTypeVariableReflexivityA}{Left Promoted Variable A}{X \& S}{X}
22044
22054
\Rule{\SrnRightFutureOrA}{Right FutureOr A}{S}{\code{Future<$T$>}}{%
22045
22055
S}{\code{FutureOr<$T$>}}
22056
+ \Rule{\SrnRightNullableOne}{Right Nullable 1}{S}{T}{S}{\code{$T$?}}
22046
22057
\Rule{\SrnLeftPromotedVariable}{Left Promoted Variable B}{S}{T}{X \& S}{T}
22047
22058
\RuleRaw{\SrnRightFunction}{Right Function}{T\mbox{ is a function type}}{%
22048
22059
T}{\FUNCTION}
@@ -22078,6 +22089,7 @@ \subsection{Subtypes}
22078
22089
\forall j \in 1 .. s\!:\;\SubtypeStd{S_j}{T_j}}{%
22079
22090
\code{$C$<\List{S}{1}{s}>}}{\code{$C$<\List{T}{1}{s}>}}
22080
22091
\ExtraVSP
22092
+ %% !!! Should include mixins (and other non-class interface types, if any).
22081
22093
\RuleRaw{\SrnSuperinterface}{Superinterface}{%
22082
22094
\code{\CLASS{} $C$<\TypeParametersNoBounds{X}{s}>\,\ldots\,\{\}}\\
22083
22095
\Superinterface{\code{$D$<\List{T}{1}{m}>}}{C} &
@@ -22129,10 +22141,9 @@ \subsubsection{Subtype Rules}
22129
22141
Whenever a rule contains one or more meta-variables,
22130
22142
that rule can be used by
22131
22143
\IndexCustom{instantiating}{instantiation!subtype rule}
22132
- it, that is, by consistently replacing
22133
- each occurrence of a given meta-variable by
22134
- concrete syntax denoting the same type
22135
- (\ref{typeType}).
22144
+ it, that is, by choosing a specific type $T$ and metavariable $\cal V$,
22145
+ and then consistently replacing all occurrences of $\cal V$ by
22146
+ concrete syntax denoting $T$.
22136
22147
22137
22148
\commentary{%
22138
22149
In general, this means that two or more occurrences of
@@ -22145,11 +22156,12 @@ \subsubsection{Subtype Rules}
22145
22156
can be used to conclude
22146
22157
\Subtype{\emptyset}{\code{int}}{\code{int}},
22147
22158
where $\emptyset$ denotes the empty environment
22148
- (any environment would suffice because no type variables occur).
22159
+ (any environment would suffice because no type variables occur).%
22160
+ }
22149
22161
22150
- However, the wording `denoting the same type' above covers
22151
- additional situations as well :
22152
- For instance, we may use rule~\SrnReflexivity{}
22162
+ \commentary{%
22163
+ The phrases `same type' and `identical syntax' deserves some extra scrutiny :
22164
+ We may, e.g., use rule~\SrnReflexivity{}
22153
22165
to show that \code{p1.C} is a subtype of
22154
22166
\code{p2.C} when \code{C} is a class declared in a
22155
22167
library $L$ which is imported by libraries $L_1$ and $L_2$ and
@@ -22178,8 +22190,27 @@ \subsubsection{Subtype Rules}
22178
22190
}
22179
22191
22180
22192
\LMHash{}%
22181
- Every \synt{typeName} used in a type mentioned in this section is assumed to
22182
- have no compile-time error and denote a type.
22193
+ In this section,
22194
+ the notion of two types $T_1$ and $T_2$ being the same type
22195
+ is taken to mean that $T_1$ and $T_2$ have the same canonical syntax
22196
+ (\ref{standardUpperBoundsAndStandardLowerBounds}).
22197
+
22198
+ \commentary{%
22199
+ In other words, we eliminate the difficulties associated with
22200
+ different syntax denoting the same type,
22201
+ and different types denoted by the same syntax,
22202
+ by assuming that every type in the program has been expressed
22203
+ in a manner where those situations never occur,
22204
+ because each type is denoted by the same globally unique syntax everywhere.
22205
+ Note that `same canonical syntax' also requires
22206
+ transitive expansion of all type aliases
22207
+ (\ref{typedef}).%
22208
+ }
22209
+
22210
+ \LMHash{}%
22211
+ Every \synt{typeName} used in a type mentioned in this section
22212
+ is assumed to have no compile-time error,
22213
+ and it is assumed to denote a type.
22183
22214
22184
22215
\commentary{%
22185
22216
That is, no subtyping relationship can be proven for
@@ -22227,9 +22258,11 @@ \subsubsection{Subtype Rules}
22227
22258
So
22228
22259
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double} \} \uplus
22229
22260
\{ \code{Z} \mapsto \code{Object} \} =
22230
- \{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, \code{Z} \mapsto \code{Object} \}$
22261
+ \{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, %
22262
+ \code{Z} \mapsto \code{Object} \}$
22231
22263
and
22232
- $\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{FutureOr<List<double>{}>} \} \uplus
22264
+ $\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto %
22265
+ \code{FutureOr<List<double>{}>} \} \uplus
22233
22266
\{ \code{Y} \mapsto \code{int} \} =
22234
22267
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{int} \}$.
22235
22268
Note that operator $\uplus$ is concerned with scopes and shadowing,
@@ -22279,28 +22312,6 @@ \subsubsection{Being a subtype}
22279
22312
each of the premises of $R$,
22280
22313
continuing until a rule with no premises is reached.
22281
22314
22282
- \LMHash{}%
22283
- The first premise in the
22284
- rules~\SrnLeftTypeAlias{} and~\SrnRightTypeAlias{}
22285
- is a type alias declaration.
22286
- This premise is satisfied in each of the following situations:
22287
-
22288
- \begin{itemize}
22289
- \item A non-generic type alias named $F$ is declared.
22290
- In this case $s$ is zero,
22291
- no assumptions are made about the existence
22292
- of any formal type parameters,
22293
- and actual type argument lists are omitted everywhere in the rule.
22294
- \item We may choose $s$ and \List{X}{1}{s} such that the following holds:
22295
- A generic type alias named $F$ is declared,
22296
- with formal type parameters \List{X}{1}{s}.
22297
- \commentary{%
22298
- Each formal type parameter $X_j$ may have a bound,
22299
- but the bounds are never used in this context,
22300
- so we do not introduce metavariables for them.%
22301
- }
22302
- \end{itemize}
22303
-
22304
22315
\LMHash{}%
22305
22316
Rule~\SrnRightFunction{} has as a premise that `$T$ is a function type'.
22306
22317
This means that $T$ is a type of one of the forms introduced in
@@ -22409,7 +22420,7 @@ \subsubsection{Informal Subtype Rule Descriptions}
22409
22420
the rule is also valid in any environment
22410
22421
and the environment is never used explicitly,
22411
22422
so we will not repeat that.
22412
- \Item{\SrnTop }{Top}
22423
+ \Item{\SrnRightTop }{Top}
22413
22424
Every type is a subtype of \code{Object},
22414
22425
every type is a subtype of \DYNAMIC,
22415
22426
and every type is a subtype of \VOID.
@@ -22421,19 +22432,11 @@ \subsubsection{Informal Subtype Rule Descriptions}
22421
22432
(\ref{superBoundedTypes}).
22422
22433
\Item{\SrnBottom}{Bottom}
22423
22434
Every type is a supertype of $\bot$.
22424
- \Item{\SrnNull}{Null}
22425
- Every type other than $\bot$ is a supertype of \code{Null}.
22426
- \Item{\SrnLeftTypeAlias}{Type Alias Left}
22427
- An application of a type alias to some actual type arguments is
22428
- a subtype of another type $T$
22429
- if the expansion of the type alias to the type that it denotes
22430
- is a subtype of $T$.
22431
- Note that a non-generic type alias is handled by letting $s = 0$.
22432
- \Item{\SrnRightTypeAlias}{Type Alias Right}
22433
- A type $S$ is a subtype of an application of a type alias
22434
- if $S$ is a subtype of
22435
- the expansion of the type alias to the type that it denotes.
22436
- Note that a non-generic type alias is handled by letting $s = 0$.
22435
+ \Item{\SrnNullOne}{Null 1}
22436
+ \code{Null} is a subtype of every type of the form \code{$T$?}.
22437
+ \Item{\SrnNullTwo}{Null 2}
22438
+ \code{Null} is a subtype of \code{FutureOr<$T$>}
22439
+ if \code{Null} is a subtype of $T$.
22437
22440
\Item{\SrnLeftFutureOr}{Left FutureOr}
22438
22441
The type \code{FutureOr<$S$>} is a subtype of a given type $T$
22439
22442
if $S$ is a subtype of $T$ and \code{Future<$S$>} is a subtype of $T$,
@@ -22902,11 +22905,10 @@ \subsection{Type Normalization}
22902
22905
(such as \code{Never} and $X$).
22903
22906
22904
22907
In particular, \SubtypeNE{S}{T} and \SubtypeNE{T}{S} holds if and only if
22905
- \NormalizedTypeOf{$T$} is syntactically equal to \NormalizedTypeOf{$S$},
22906
- modulo replacement of atomic top types,
22907
- and modulo replacement of terms derived from \synt{typeName}
22908
- denoting the same type
22909
- (such as \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
22908
+ \NormalizedTypeOf{$T$} has the same canonical syntax as \NormalizedTypeOf{$S$}
22909
+ (\ref{standardUpperBoundsAndStandardLowerBounds}),
22910
+ modulo replacement of atomic top types
22911
+ (e.g., \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
22910
22912
}
22911
22913
22912
22914
\LMHash{}%
@@ -23114,8 +23116,8 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23114
23116
}
23115
23117
23116
23118
\LMHash{}%
23117
- Consequently, when we say that two types $T_1$ and $T_2$ are
23118
- \IndexCustom{syntactically equal }{type!syntactically equal },
23119
+ Consequently, when we say that two types $T_1$ and $T_2$ have the
23120
+ \IndexCustom{same canonical syntax }{type!same canonical syntax },
23119
23121
it refers to the situation where both $T_1$ and $T_2$ have been
23120
23122
transformed in the above sense
23121
23123
(\commentary{by alpha-renaming, alias expansion, and canonical naming}).
@@ -23349,7 +23351,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23349
23351
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
23350
23352
23351
23353
\noindent
23352
- such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types ,
23354
+ such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax ,
23353
23355
and both have the same number of required positional parameters.
23354
23356
Let $q$ be $\metavar{min}(k, l)$,
23355
23357
let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
@@ -23379,7 +23381,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23379
23381
and consider the case where the following is satisfied:
23380
23382
23381
23383
\begin{itemize}
23382
- \item Each $B_{1i}$ and $B_{2i}$ are syntactically equal types .
23384
+ \item Each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax .
23383
23385
\item For each required entry named $n$ in $\metavar{Named}_1$,
23384
23386
$\metavar{Named}_2$ contains an entry named $n$
23385
23387
(\commentary{which may or may not be required}).
@@ -23604,7 +23606,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23604
23606
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
23605
23607
23606
23608
\noindent
23607
- such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types .
23609
+ such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax .
23608
23610
Let $q$ be $\metavar{max}(k, l)$,
23609
23611
let $T_3$ be \LowerBoundType{$T_1$}{$T_2$},
23610
23612
let $B_{3i}$ be $B_{1i}$, and
@@ -23641,7 +23643,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23641
23643
where $\metavar{Named}_j$ declares a non-empty set of named parameters
23642
23644
with names $\metavar{NamesOfNamed}_j$, $j \in 1 .. 2$,
23643
23645
and consider the case where
23644
- each $B_{1i}$ and $B_{2i}$ are syntactically equal types .
23646
+ each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax .
23645
23647
Then \DefEqualsNewline{\LowerBoundType{$U_1$}{$U_2$}}{%U_3}, where $U_3$ is
23646
23648
\code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
23647
23649
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\,$P_{3k}$,\,$\metavar{Named}_3$)}},
@@ -24185,9 +24187,10 @@ \subsection{Intersection Types}
24185
24187
24186
24188
\commentary{%
24187
24189
An intersection type will never occur as a nested type, that is,
24188
- it will never occurs as
24190
+ it never occurs as or in
24189
24191
an actual type argument in a parameterized type,
24190
- as a parameter type or a return type in a function type,
24192
+ a parameter type or a return type in a function type,
24193
+ a type parameter bound,
24191
24194
as the right operand of another intersection type,
24192
24195
or as the operand of the nullable type operator \lit{?}.%
24193
24196
}
@@ -24348,24 +24351,8 @@ \subsection{Type Type}
24348
24351
and let $S_j$ be \NormalizedTypeOf{$U_j$}, for $j \in 1 .. 2$
24349
24352
(\ref{typeNormalization}).
24350
24353
We then say that $T_1$ and $T_2$ are the \Index{same type}
24351
- if{}f $S_1$ and $S_2$ are syntactically equal,
24352
- up to equivalence of bound variables,
24353
- and up to replacement of identifiers or qualified identifiers
24354
- resolving to the same type declaration
24355
- (\commentary{%
24356
- e.g., \code{C} and \code{prefix.C} could resolve to
24357
- the same class declaration%
24358
- }),
24359
- and excluding the case where two identifiers or qualified identifiers
24360
- occurring at corresponding positions in $S_1$ and $S_2$
24361
- are syntactically identical,
24362
- but resolve to different declarations
24363
- (\commentary{%
24364
- e.g., one occurrence of \code{C} could resolve to a
24365
- class declaration imported from a library $L_1$,
24366
- and another occurrence of \code{C} could resolve to a
24367
- class declaration imported from a different library $L_2$%
24368
- }).
24354
+ if{}f $S_1$ and $S_2$ are have the same canonical syntax
24355
+ (\ref{standardUpperBoundsAndStandardLowerBounds}).
24369
24356
24370
24357
\LMHash{}%
24371
24358
A reified type identifies the underlying type in the sense that
@@ -25774,7 +25761,7 @@ \section*{Appendix: Algorithmic Subtyping}
25774
25761
\end{minipage}
25775
25762
%
25776
25763
\caption{Algorithmic subtype rules.
25777
- Rules \SrnTop --\SrnSuperinterface{} are unchanged and hence omitted here.}
25764
+ Rules \SrnRightTop --\SrnSuperinterface{} are unchanged and hence omitted here.}
25778
25765
\label{fig:algorithmicSubtypeRules}
25779
25766
\end{figure}
25780
25767
@@ -25835,7 +25822,7 @@ \section*{Appendix: Algorithmic Subtyping}
25835
25822
followed by the rule whose number is $N+1$.
25836
25823
\commentary{%
25837
25824
So the order is
25838
- \AppSrnReflexivity, \SrnTop --\SrnTypeVariableReflexivityA,
25825
+ \AppSrnReflexivity, \SrnRightTop --\SrnTypeVariableReflexivityA,
25839
25826
\AppSrnTypeVariableReflexivityB, \AppSrnTypeVariableReflexivityC,
25840
25827
\AppSrnTypeVariableReflexivityD,
25841
25828
\SrnRightPromotedVariable, and so on.%
0 commit comments