@@ -23632,7 +23632,7 @@ \section*{Appendix: Algorithmic Subtyping}
23632
23632
then \SubtypeNE{T_0}{T_1} if{}f \SubtypeNE{S_i}{T_1} for some $i$.
23633
23633
\item
23634
23634
\textbf{Positional Function Types:}
23635
- $T_0$ is
23635
+ If $T_0$ is
23636
23636
23637
23637
\code{$U_0$ \FUNCTION<%
23638
23638
$X_0$\,\EXTENDS\,$B_{00}$, \ldots, $X_k$\,\EXTENDS\,$B_{0k}$>(%
@@ -23646,7 +23646,7 @@ \section*{Appendix: Algorithmic Subtyping}
23646
23646
$S_0$\,$y_0$, \ldots, $S_p$\,$y_p$, %
23647
23647
[$S_{p+1}$\,$y_{p+1}$, \ldots, $S_q$\,$y_q$])}
23648
23648
23649
- such that each of the following criteria is satisfied,
23649
+ then \SubtypeNE{T_0}{T_1} if{}f each of the following criteria is satisfied,
23650
23650
where the $Z_i$ are fresh type variables with bounds
23651
23651
$B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
23652
23652
@@ -23661,7 +23661,7 @@ \section*{Appendix: Algorithmic Subtyping}
23661
23661
\end{itemize}
23662
23662
\item
23663
23663
\textbf{Named Function Types:}
23664
- $T_0$ is
23664
+ If $T_0$ is
23665
23665
23666
23666
\code{%
23667
23667
$U_0$ \FUNCTION<$X_0$\,\EXTENDS\,$B_{00}$, \ldots, %
@@ -23679,7 +23679,7 @@ \section*{Appendix: Algorithmic Subtyping}
23679
23679
\{$r_{1,n+1}$\,$S_{n+1}$\,$y_{n+1}$, \ldots, $r_{1q}$\,$S_q$\,$y_q$\})}
23680
23680
23681
23681
where $r_{1j}$ is empty or \REQUIRED{} for $j \in n+1 .. q$
23682
- and the following criteria are all satisfied,
23682
+ then \SubtypeNE{T_0}{T_1} if{}f the following criteria are all satisfied,
23683
23683
where \List{Z}{1}{k} are fresh type variables with bounds
23684
23684
$B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
23685
23685
0 commit comments