Skip to content

Commit 4e68aee

Browse files
committed
WIP
1 parent 95a17b3 commit 4e68aee

File tree

2 files changed

+65
-59
lines changed

2 files changed

+65
-59
lines changed

specification/dart.sty

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -456,7 +456,7 @@
456456
\FunctionTypeAllRequired{#1}{ }{X}{B}{s}{T}{n}}
457457

458458
\newcommand{\FunctionTypeNamedStdArgCr}[1]{%
459-
\FunctionTypeNamedArgCr{#1}{ }{X}{B}{s}{T}{n}{x}{k}{r}}
459+
\FunctionTypeNamedArgCr{#1}{ }{X}{B}{s}{T}{n}{x}{k}}
460460

461461
% Same as \FunctionTypeAllRequiredStd except that it includes a newline, hence
462462
% suitable for function types that are too long to fit in one line.

specification/dartLangSpec.tex

Lines changed: 64 additions & 58 deletions
Original file line numberDiff line numberDiff line change
@@ -21649,9 +21649,6 @@ \subsection{Subtypes}
2164921649
\newcommand{\SrnRightTop}{2}
2165021650
\newcommand{\SrnLeftTop}{3}
2165121651
\newcommand{\SrnBottom}{4}
21652-
%\newcommand{\SrnRightObjectOne}{} Redundant
21653-
%\newcommand{\SrnRightObjectTwo}{} Redundant
21654-
%\newcommand{\SrnRightObjectThree}{} Redundant
2165521652
\newcommand{\SrnRightObjectFour}{5}
2165621653
\newcommand{\SrnNullOne}{6}
2165721654
\newcommand{\SrnNullTwo}{7}
@@ -22262,7 +22259,8 @@ \subsection{Type Nullability}
2226222259
Nullable types are types which are
2226322260
definitively known to include the null object,
2226422261
regardless of the value of any type variables.
22265-
This is equivalent to the syntactic criterion that $T$ is any of:
22262+
If $T'$ is the transitive alias expansion (\ref{typedef}) of $T$
22263+
then this is equivalent to the syntactic criterion that $T'$ is any of:
2226622264

2226722265
\begin{itemize}[itemsep=-0.5ex]
2226822266
\item \VOID.
@@ -22284,7 +22282,8 @@ \subsection{Type Nullability}
2228422282
Non-nullable types are types which are definitively known to
2228522283
\emph{not} include the null object,
2228622284
regardless of the value of any type variables.
22287-
This is equivalent to the syntactic criterion that $T$ is any of:
22285+
If $T'$ is the transitive alias expansion (\ref{typedef}) of $T$
22286+
then this is equivalent to the syntactic criterion that $T$ is any of:
2228822287

2228922288
\begin{itemize}[itemsep=-0.5ex]
2229022289
\item \code{Never}.
@@ -22651,21 +22650,23 @@ \subsection{Type Normalization}
2265122650

2265222651
\noindent
2265322652
then $T_r$ is
22654-
\FunctionTypePositional{R_0}{ }{X}{B}{s}{R}{n}{k}
22653+
\FunctionTypePositional{T'\!_0}{ }{X}{B'\!}{s}{T'\!}{n}{k}
2265522654

2265622655
\noindent
22657-
where $R_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$.
22656+
where $T'\!_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$
22657+
and $B'\!_i$ is \NormalizedTypeOf{$B_i$} for $i \in 1 .. s$.
2265822658
\item If $T_u$ is of the form
2265922659
\FunctionTypeNamedStd{T_0}
2266022660

2266122661
\noindent
2266222662
where $r_j$ is either \REQUIRED{} or empty
2266322663
then $T_r$ is
2266422664
\noindent
22665-
\FunctionTypeNamed{R_0}{ }{X}{B}{s}{R}{n}{x}{k}{r}
22665+
\FunctionTypeNamed{T'\!_0}{ }{X}{B'\!}{s}{T'\!}{n}{x}{k}
2266622666

2266722667
\noindent
22668-
where $R_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$.
22668+
where $T'\!_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$
22669+
and $B'\!_i$ is \NormalizedTypeOf{$B_i$} for $i \in 0 .. s$.
2266922670
\end{itemize}
2267022671

2267122672
\commentary{%
@@ -23003,8 +23004,8 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2300323004
which is defined as follows.
2300423005
Assume that $P_1$ and $P_2$ are two formal parameter type declarations
2300523006
with declared type $T_1$ respectively $T_2$,
23006-
such that both are positional or both are named,
23007-
with the same name \DefineSymbol{n}.
23007+
such that both are positional,
23008+
or both are named and have the same name \DefineSymbol{n}.
2300823009
Then \UpperBoundType{$P_1$}{$P_2$} (respectively \LowerBoundType{$P_1$}{$P_2$})
2300923010
is the formal parameter declaration $P$,
2301023011
with the following proporties:
@@ -23023,7 +23024,8 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2302323024
}
2302423025
\item
2302523026
$P$ is named if $P_1$ and $P_2$ are named.
23026-
In this case, the name of $P$ is $n$.
23027+
In this case, the name of $P$ is $n$
23028+
(\commentary{which is also the name of $P_1$ and $P_2$}).
2302723029
$P$ is marked with the modifier \REQUIRED{}
2302823030
if both $P_1$ and $P_2$ have this modifier
2302923031
(respectively, if either $P_1$ or $P_2$ has this modifier).
@@ -23202,22 +23204,25 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2320223204

2320323205
\noindent
2320423206
\code{$T_1$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{11}$,\,\ldots,\,$X_m$\,%
23205-
\EXTENDS\,$B_{1m}$>($P_{11}$,\,\ldots,\,$P_{1k}$)}
23207+
\EXTENDS\,$B_{1m}$>($P_{11}$,\,\ldots[\ldots\,$P_{1k}$])}
2320623208

2320723209
\noindent
2320823210
\code{$T_2$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{21}$,\,\ldots,\,$X_m$\,%
23209-
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
23211+
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots[\ldots\,$P_{2l}$])}
2321023212

2321123213
\noindent
2321223214
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax,
23213-
and both have the same number of required positional parameters.
23215+
and both $U_1$ or $U_2$ have
23216+
the same number of required positional parameters.
23217+
In the case where $U_1$ or $U_2$ has no optional positional parameters,
23218+
the brackets are omitted.
2321423219
Let $q$ be $\metavar{min}(k, l)$,
2321523220
let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
23216-
let $B_{3i}$ be $B_{1i}$, and
23221+
let $B_{3i}$ be $B_{1i}$, and finally
2321723222
let $P_{3i}$ be \LowerBoundType{$P_{1i}$}{$P_{2i}$}.
23218-
Then \DefEquals{\UpperBoundType{$U_1$}{$U_2$}}{%
23223+
Then \DefEqualsNewline{\UpperBoundType{$U_1$}{$U_2$}}{%
2321923224
\code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
23220-
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\,$P_{3q}$)}}.
23225+
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots[\ldots\,$P_{3q}$])}}.
2322123226

2322223227
\commentary{%
2322323228
This case includes non-generic function types by allowing $m$ to be zero.%
@@ -23275,8 +23280,11 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2327523280
%%
2327623281
%% TODO(eernst), for review: Why do we not have a rule for
2327723282
%% \UpperBoundType{T1 Function(P1..Pm, [...])}{T2 Function(P1..Pk, {...}}}
23278-
%% = T3 Function(R1..Rk), where the left operand has at least k parameters,
23279-
%% plus the converse?
23283+
%% = T3 Function(R1..Rk), where the left operand has at least k parameters
23284+
%% and every named parameter of the right operand is optional (plus the
23285+
%% same rule with operands swapped)?
23286+
%% Motivation: Some expressions of type `Function` would then have a more
23287+
%% precise type, and programs would be safer (a tiny bit, at least).
2328023288
%%
2328123289
\item
2328223290
\DefEquals{\UpperBoundType{$S_1$ \FUNCTION<\ldots>(\ldots)}{%
@@ -23639,7 +23647,7 @@ \subsubsection{The Standard Upper Bound of Distinct Interface Types}
2363923647
$\{\;T\;|\;T\,\in\,M\;\wedge\;\NominalTypeDepth{$T$}\,=\,n\,\}$
2364023648
for any natural number $n$.
2364123649
Let $q$ be the largest number such that $M_q$ has cardinality one.
23642-
Such a number must exist because $M_0$ is $\{\code{Object?}\}$.
23650+
Such a number must exist because $M_0$ is $\{\code{Object}\}$.
2364323651
The least upper bound of $I$ and $J$ is then the sole element of $M_q$.
2364423652

2364523653

@@ -23872,7 +23880,7 @@ \subsection{Least and Greatest Closure of Types}
2387223880
the least closure of $S$ with respect to $L$ is
2387323881

2387423882
\noindent
23875-
\FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}{r}
23883+
\FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}
2387623884

2387723885
\noindent
2387823886
where
@@ -23887,7 +23895,7 @@ \subsection{Least and Greatest Closure of Types}
2388723895
the greatest closure of $S$ with respect to $L$ is
2388823896

2388923897
\noindent
23890-
\FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}{r}
23898+
\FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}
2389123899

2389223900
\noindent
2389323901
where $U_0$ is the greatest closure of $T_0$ with respect to $L$,
@@ -23943,15 +23951,17 @@ \subsection{Types Bounded by Types}
2394323951
\LMLabel{typesBoundedByTypes}
2394423952

2394523953
\LMHash{}%
23946-
For a given type $T_0$, we introduce the notion of a
23947-
\IndexCustom{$T_0$ bounded type}{type!T0 bounded}:
23948-
$T_0$ itself is $T_0$ bounded;
23949-
if $B$ is $T_0$ bounded and
23954+
For a given type $T$, we introduce the notion of a
23955+
% `T bounded` at the end should have been `$T$ bounded`, but makeindex
23956+
% seems to be unable to allow math mode in that position.
23957+
\IndexCustom{$T$ bounded type}{type!T bounded}:
23958+
$T$ itself is $T$ bounded;
23959+
if $B$ is $T$ bounded and
2395023960
$X$ is a type variable with bound $B$
23951-
then $X$ is $T_0$ bounded;
23952-
finally, if $B$ is $T_0$ bounded and
23961+
then $X$ is $T$ bounded;
23962+
finally, if $B$ is $T$ bounded and
2395323963
$X$ is a type variable
23954-
then $X \& B$ is $T_0$ bounded.
23964+
then $X \& B$ is $T$ bounded.
2395523965

2395623966
\LMHash{}%
2395723967
In particular, a
@@ -23965,11 +23975,11 @@ \subsection{Types Bounded by Types}
2396523975
\LMHash{}%
2396623976
A
2396723977
\IndexCustom{function-type bounded type}{type!function-type bounded}
23968-
is a type $T$ which is $T_0$ bounded where $T_0$ is a function type
23978+
is a type $S$ which is $T$ bounded where $T$ is a function type
2396923979
(\ref{functionTypes}).
23970-
A function-type bounded type $T$ has an
23980+
A function-type bounded type $S$ has an
2397123981
\Index{associated function type}
23972-
which is the unique function type $T_0$ such that $T$ is $T_0$ bounded.
23982+
which is the unique function type $T$ such that $S$ is $T$ bounded.
2397323983

2397423984

2397523985
\subsection{Class Building Types}
@@ -24030,7 +24040,7 @@ \subsection{Interface Types}
2403024040
are interface types,
2403124041
and so are
2403224042
\code{Future<$T$>}, \code{Stream<$T$>}, \code{Iterable<$T$>},
24033-
\code{List<$T$>}, \code{Map<$S$,\,\,$T$}, and \code{Set<$T$>},
24043+
\code{List<$T$>}, \code{Map<$S$,\,\,$T$>}, and \code{Set<$T$>},
2403424044
for any $S$ and $T$.%
2403524045
}
2403624046

@@ -24156,8 +24166,13 @@ \subsection{Type Null}
2415624166
\code{Null} is a subtype of all types of the form \code{$T$?},
2415724167
and of all types $S$ such that \futureOrBase{S} is
2415824168
a top type or a type of the form \code{$T$?}.
24159-
The only non-trivial subtypes of \code{Null} are
24160-
\code{Never} and subtypes of \code{Never}
24169+
The only subtypes of \code{Null} are
24170+
other types that contain the null object and no other objects,
24171+
e.g., \code{Null?},
24172+
the empty type,
24173+
i.e., \code{Never} and subtypes of \code{Never},
24174+
and types that could be either,
24175+
e.g., a type variable with bound \code{Null}
2416124176
(\ref{subtypeRules}).%
2416224177
}
2416324178

@@ -24683,22 +24698,10 @@ \subsection{Type Void}
2468324698
\commentary{%
2468424699
The type \VOID{} is a top type
2468524700
(\ref{superBoundedTypes}),
24686-
so \VOID{} and \code{Object} are subtypes of each other
24701+
so \VOID{} and \code{Object?} are subtypes of each other
2468724702
(\ref{subtypes}),
2468824703
which also implies that any object can be
24689-
the value of an expression of type \VOID.
24690-
%
24691-
Consequently, any instance of type \code{Type} which reifies the type \VOID{}
24692-
must compare equal (according to the \lit{==} operator \ref{equality})
24693-
to any instance of \code{Type} which reifies the type \code{Object}
24694-
(\ref{dynamicTypeSystem}).
24695-
It is not guaranteed that \code{identical(\VOID, Object)} evaluates to
24696-
the \TRUE{} object.
24697-
In fact, it is not recommended that implementations strive to achieve this,
24698-
because it may be more important to ensure that diagnostic messages
24699-
(including stack traces and dynamic error messages)
24700-
preserve enough information to use the word `void' when referring to types
24701-
which are specified as such in source code.%
24704+
the value of an expression of type \VOID.%
2470224705
}
2470324706

2470424707
\LMHash{}%
@@ -24836,7 +24839,7 @@ \subsection{Type Void}
2483624839
}
2483724840

2483824841
\begin{dartCode}
24839-
\FOR{} (Object x in <\VOID>[]) \{\} // \comment{Error.}
24842+
\FOR{} (Object? x in <\VOID>[]) \{\} // \comment{Error.}
2484024843
\AWAIT{} \FOR{} (int x \IN{} new Stream<\VOID{}>.empty()) \{\} // \comment{Error.}
2484124844
\FOR{} (\VOID{} x \IN{} <\VOID{}>[]) \{\ldots\} // \comment{OK.}
2484224845
\FOR (\VAR{} x \IN{} <\VOID{}>[]) \{\ldots\} // \comment{OK, type of x inferred.}
@@ -25145,9 +25148,11 @@ \subsection{Definite Assignment}
2514525148
(\commentary{%
2514625149
e.g., as an expression, or as the left hand side of an assignment%
2514725150
}),
25148-
the variable has a status as being
25149-
\IndexCustom{definitely assigned}{local variable!definitely assigned} or
25150-
\IndexCustom{definitely unassigned}{local variable!definitely unassigned}.
25151+
the variable can be
25152+
\IndexCustom{definitely assigned}{local variable!definitely assigned},
25153+
and it can be
25154+
\IndexCustom{definitely unassigned}{local variable!definitely unassigned},
25155+
and it can be neither.
2515125156

2515225157
\commentary{%
2515325158
The precise flow analysis which determines this status at each location
@@ -25400,15 +25405,16 @@ \subsection{Type Promotion}
2540025405

2540125406
%% TODO(eernst), for review: The null safety spec says that `T?` is
2540225407
%% promoted to `T`, but implementations _do_ promote `X extends int?` to
25403-
%% `X & int`. So I've specified the latter. This is also more consistent
25404-
%% with the approach used with `==`.
25408+
%% `X & int`. So we may be able to specify something which will yield
25409+
%% slightly more precise types, and which is more precisely the implemented
25410+
%% behavior.
2540525411
\LMHash{}%
2540625412
A check of the form \code{$v$\,\,!=\,\,\NULL},
2540725413
\code{\NULL\,\,!=\,\,$v$},
2540825414
or \code{$v$\,\,\IS\,\,$T$}
25409-
where $v$ has type $T$ at $\ell$
25415+
where $v$ has static type $T?$ at $\ell$
2541025416
promotes the type of $v$
25411-
to \NonNullType{$T$} in the \TRUE{} continuation,
25417+
to $T$ in the \TRUE{} continuation,
2541225418
and to \code{Null} in the \FALSE{} continuation.
2541325419

2541425420
\commentary{%

0 commit comments

Comments
 (0)