Skip to content

Commit 87ed29f

Browse files
committed
Rebase
1 parent 5ca904a commit 87ed29f

File tree

1 file changed

+107
-120
lines changed

1 file changed

+107
-120
lines changed

specification/dartLangSpec.tex

Lines changed: 107 additions & 120 deletions
Original file line numberDiff line numberDiff line change
@@ -22225,43 +22225,41 @@ \subsection{Subtypes}
2222522225
}
2222622226

2222722227
\LMHash{}%
22228-
%% TODO(eernst): Introduce these specialized intersection types
22229-
%% in a suitable location where type promotion is specified.
22230-
Types of the form
22231-
\IndexCustom{$X \& S$}{type!of the form $X \& S$}%
22232-
\IndexExtraEntry{\&@$X \& S$}
22233-
arise during static analysis due to type promotion
22228+
Intersection types
22229+
(\commentary{types of the form \code{$X$\,\&\,$S$}}),
22230+
may arise during static analysis due to type promotion
2223422231
(\ref{typePromotion}).
2223522232
They never occur during execution,
22236-
they are never a type argument of another type,
22237-
nor a return type or a formal parameter type,
22238-
and it is always the case that $S$ is a subtype of the bound of $X$.
22239-
\commentary{%
22240-
The motivation for $X \& S$ is that it represents
22241-
the type of a local variable $v$
22242-
whose type is declared to be the type variable $X$,
22243-
and which is known to have type $S$ due to promotion.
22244-
Similarly, $X \& S$ may be seen as an intersection type,
22245-
which is a subtype of $X$ and also a subtype of $S$.
22246-
Intersection types are \emph{not} supported in general,
22247-
only in this special case.%
22248-
}
22249-
Every other form of type may occur during static analysis
22250-
as well as during execution,
22251-
and the subtype relationship is always determined in the same way.
22233+
and there are many other restrictions on where they can occur
22234+
(\ref{intersectionTypes}).
22235+
However, their subtype relations are specified without restrictions.
22236+
\commentary{%
22237+
It causes no problems that these rules will not be used
22238+
in their full generality.%
22239+
}
2225222240

22241+
!!! Renumber!
2225322242
% Subtype Rule Numbering
2225422243
\newcommand{\SrnReflexivity}{1}
22255-
\newcommand{\SrnTop}{2}
22256-
\newcommand{\SrnBottom}{3}
22257-
\newcommand{\SrnNull}{4}
22258-
\newcommand{\SrnLeftTypeAlias}{5}
22259-
\newcommand{\SrnRightTypeAlias}{6}
22244+
\newcommand{\SrnRightTop}{2}
22245+
\newcommand{\SrnLeftTop}{3}
22246+
\newcommand{\SrnBottom}{4}
22247+
\newcommand{\SrnRightObjectOne}{5.1}
22248+
\newcommand{\SrnRightObjectTwo}{5.2}
22249+
\newcommand{\SrnRightObjectThree}{5.3}
22250+
\newcommand{\SrnRightObjectFour}{5.4}
22251+
\newcommand{\SrnNullOne}{6.1}
22252+
\newcommand{\SrnNullTwo}{6.2}
2226022253
\newcommand{\SrnLeftFutureOr}{7}
22254+
\newcommand{\SrnLeftNullable}{7b}
2226122255
\newcommand{\SrnTypeVariableReflexivityA}{8}
2226222256
\newcommand{\SrnRightPromotedVariable}{9}
2226322257
\newcommand{\SrnRightFutureOrA}{10}
2226422258
\newcommand{\SrnRightFutureOrB}{11}
22259+
\newcommand{\SrnRightNullableOne}{11b.1}
22260+
\newcommand{\SrnRightNullableTwo}{11b.2}
22261+
\newcommand{\SrnRightNullableThree}{11b.3}
22262+
\newcommand{\SrnRightNullableFour}{11b.4}
2226522263
\newcommand{\SrnLeftPromotedVariable}{12}
2226622264
\newcommand{\SrnLeftVariableBound}{13}
2226722265
\newcommand{\SrnRightFunction}{14}
@@ -22282,34 +22280,47 @@ \subsection{Subtypes}
2228222280
\def\RuleRawRaw#1#2#3#4{\centerline{\inference[#1]{#3}{#4}}\VSP}
2228322281
%
2228422282
\begin{minipage}[c]{0.49\textwidth}
22285-
\Axiom{\SrnReflexivity}{Reflexivity}{S}{S}
22286-
\Axiom{\SrnBottom}{Left Bottom}{\bot}{T}
22283+
\Axiom{\SrnReflexivity}{Reflexivity}{T}{T}
22284+
\Axiom{\SrnBottom}{Left Bottom}{\code{Never}}{T}
22285+
\RuleRaw{\SrnRightObjectTwo}{Right Object 2}{%
22286+
\SubtypeStd{S}{\code{Object}}}{\code{$X$\,\&\,$S$}}{\code{Object}}
22287+
\RuleRaw{\SrnRightObjectThree}{Right Object 3}{%
22288+
\SubtypeStd{S}{\code{Object}}}{\code{FutureOr<$S$>}}{\code{Object}}
22289+
\Axiom{\SrnNullOne}{Left Null One}{\code{Null}}{\code{$T$?}}
2228722290
\end{minipage}
2228822291
\begin{minipage}[c]{0.49\textwidth}
22289-
\RuleRaw{\SrnTop}{Right Top}{T \in \{\code{Object}, \DYNAMIC, \VOID\}}{S}{T}
22290-
\RuleRaw{\SrnNull}{Left Null}{T \not= \bot}{\code{Null}}{T}
22292+
\RuleRaw{\SrnRightTop}{Right Top}{%
22293+
T \in \{\code{Object?}, \DYNAMIC, \VOID\}}{S}{T}
22294+
\RuleRaw{\SrnLeftTop}{Left Top}{%
22295+
S \in \{\DYNAMIC, \VOID\} & \SubtypeStd{\code{Object?}}{T}}{S}{T}
22296+
\RuleRaw{\SrnRightObjectOne}{Right Object 1}{%
22297+
\code{$X$\,\EXTENDS\,$B$} & \SubtypeStd{B}{\code{Object}}%
22298+
}{X}{\code{Object}}
22299+
\RuleRaw{\SrnRightObjectFour}{Right Object 4}{%
22300+
$S$\,\not\in \{\code{Null}, \DYNAMIC, \VOID\}\\
22301+
\mbox{$S$ is not of the form \code{$U$?}, $X$, %
22302+
\code{$X$\,\&\,$U$}, \code{FutureOr<$U$>}}}{S}{\code{Object}}
22303+
\Rule{\SrnNullTwo}{Left Null Two}{\code{Null}}{T}{%
22304+
\code{Null}}{\code{FutureOr<$T$>}}
2229122305
\end{minipage}
2229222306

22293-
\ExtraVSP
22294-
\RuleRaw{\SrnLeftTypeAlias}{Type Alias Left}{%
22295-
\code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22296-
\SubtypeStd{[S_1/X_1,\ldots,S_s/X_s]U}{T}}{\code{$F$<\List{S}{1}{s}>}}{T}
22297-
\RuleRaw{\SrnRightTypeAlias}{Type Alias Right}{%
22298-
\code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22299-
\SubtypeStd{S}{[T_1/X_1,\ldots,T_s/X_s]U}}{S}{\code{$F$<\List{T}{1}{s}>}}
22300-
2230122307
\begin{minipage}[c]{0.49\textwidth}
2230222308
\RuleTwo{\SrnLeftFutureOr}{Left FutureOr}{S}{T}{%
2230322309
\code{Future<$S$>}}{T}{\code{FutureOr<$S$>}}{T}
2230422310
\RuleTwo{\SrnRightPromotedVariable}{Right Promoted Variable}{S}{X}{S}{T}{%
2230522311
S}{X \& T}
2230622312
\Rule{\SrnRightFutureOrB}{Right FutureOr B}{S}{T}{S}{\code{FutureOr<$T$>}}
22313+
\Rule{\SrnRightNullableTwo}{Right Nullable 2}{S}{\code{Null}}{S}{%
22314+
\code{$T$?}}
2230722315
\Rule{\SrnLeftVariableBound}{Left Variable Bound}{\Gamma(X)}{T}{X}{T}
2230822316
\end{minipage}
2230922317
\begin{minipage}[c]{0.49\textwidth}
22318+
\RuleTwo{\SrnLeftNullable}{Left Nullable}{S}{T}{\code{Null}}{T}{
22319+
\code{$S$?}}{T}
2231022320
\Axiom{\SrnTypeVariableReflexivityA}{Left Promoted Variable A}{X \& S}{X}
2231122321
\Rule{\SrnRightFutureOrA}{Right FutureOr A}{S}{\code{Future<$T$>}}{%
2231222322
S}{\code{FutureOr<$T$>}}
22323+
\Rule{\SrnRightNullableOne}{Right Nullable 1}{S}{T}{S}{\code{$T$?}}
2231322324
\Rule{\SrnLeftPromotedVariable}{Left Promoted Variable B}{S}{T}{X \& S}{T}
2231422325
\RuleRaw{\SrnRightFunction}{Right Function}{T\mbox{ is a function type}}{%
2231522326
T}{\FUNCTION}
@@ -22345,6 +22356,7 @@ \subsection{Subtypes}
2234522356
\forall j \in 1 .. s\!:\;\SubtypeStd{S_j}{T_j}}{%
2234622357
\code{$C$<\List{S}{1}{s}>}}{\code{$C$<\List{T}{1}{s}>}}
2234722358
\ExtraVSP
22359+
%% !!! Should include mixins (and other non-class interface types, if any).
2234822360
\RuleRaw{\SrnSuperinterface}{Superinterface}{%
2234922361
\code{\CLASS{} $C$<\TypeParametersNoBounds{X}{s}>\,\ldots\,\{\}}\\
2235022362
\Superinterface{\code{$D$<\List{T}{1}{m}>}}{C} &
@@ -22396,10 +22408,9 @@ \subsubsection{Subtype Rules}
2239622408
Whenever a rule contains one or more meta-variables,
2239722409
that rule can be used by
2239822410
\IndexCustom{instantiating}{instantiation!subtype rule}
22399-
it, that is, by consistently replacing
22400-
each occurrence of a given meta-variable by
22401-
concrete syntax denoting the same type
22402-
(\ref{typeType}).
22411+
it, that is, by choosing a specific type $T$ and metavariable $\cal V$,
22412+
and then consistently replacing all occurrences of $\cal V$ by
22413+
concrete syntax denoting $T$.
2240322414

2240422415
\commentary{%
2240522416
In general, this means that two or more occurrences of
@@ -22412,11 +22423,12 @@ \subsubsection{Subtype Rules}
2241222423
can be used to conclude
2241322424
\Subtype{\emptyset}{\code{int}}{\code{int}},
2241422425
where $\emptyset$ denotes the empty environment
22415-
(any environment would suffice because no type variables occur).
22426+
(any environment would suffice because no type variables occur).%
22427+
}
2241622428

22417-
However, the wording `denoting the same type' above covers
22418-
additional situations as well:
22419-
For instance, we may use rule~\SrnReflexivity{}
22429+
\commentary{%
22430+
The phrases `same type' and `identical syntax' deserves some extra scrutiny:
22431+
We may, e.g., use rule~\SrnReflexivity{}
2242022432
to show that \code{p1.C} is a subtype of
2242122433
\code{p2.C} when \code{C} is a class declared in a
2242222434
library $L$ which is imported by libraries $L_1$ and $L_2$ and
@@ -22445,8 +22457,27 @@ \subsubsection{Subtype Rules}
2244522457
}
2244622458

2244722459
\LMHash{}%
22448-
Every \synt{typeName} used in a type mentioned in this section is assumed to
22449-
have no compile-time error and denote a type.
22460+
In this section,
22461+
the notion of two types $T_1$ and $T_2$ being the same type
22462+
is taken to mean that $T_1$ and $T_2$ have the same canonical syntax
22463+
(\ref{standardUpperBoundsAndStandardLowerBounds}).
22464+
22465+
\commentary{%
22466+
In other words, we eliminate the difficulties associated with
22467+
different syntax denoting the same type,
22468+
and different types denoted by the same syntax,
22469+
by assuming that every type in the program has been expressed
22470+
in a manner where those situations never occur,
22471+
because each type is denoted by the same globally unique syntax everywhere.
22472+
Note that `same canonical syntax' also requires
22473+
transitive expansion of all type aliases
22474+
(\ref{typedef}).%
22475+
}
22476+
22477+
\LMHash{}%
22478+
Every \synt{typeName} used in a type mentioned in this section
22479+
is assumed to have no compile-time error,
22480+
and it is assumed to denote a type.
2245022481

2245122482
\commentary{%
2245222483
That is, no subtyping relationship can be proven for
@@ -22494,9 +22525,11 @@ \subsubsection{Subtype Rules}
2249422525
So
2249522526
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double} \} \uplus
2249622527
\{ \code{Z} \mapsto \code{Object} \} =
22497-
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, \code{Z} \mapsto \code{Object} \}$
22528+
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, %
22529+
\code{Z} \mapsto \code{Object} \}$
2249822530
and
22499-
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{FutureOr<List<double>{}>} \} \uplus
22531+
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto %
22532+
\code{FutureOr<List<double>{}>} \} \uplus
2250022533
\{ \code{Y} \mapsto \code{int} \} =
2250122534
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{int} \}$.
2250222535
Note that operator $\uplus$ is concerned with scopes and shadowing,
@@ -22546,28 +22579,6 @@ \subsubsection{Being a subtype}
2254622579
each of the premises of $R$,
2254722580
continuing until a rule with no premises is reached.
2254822581

22549-
\LMHash{}%
22550-
The first premise in the
22551-
rules~\SrnLeftTypeAlias{} and~\SrnRightTypeAlias{}
22552-
is a type alias declaration.
22553-
This premise is satisfied in each of the following situations:
22554-
22555-
\begin{itemize}
22556-
\item A non-generic type alias named $F$ is declared.
22557-
In this case $s$ is zero,
22558-
no assumptions are made about the existence
22559-
of any formal type parameters,
22560-
and actual type argument lists are omitted everywhere in the rule.
22561-
\item We may choose $s$ and \List{X}{1}{s} such that the following holds:
22562-
A generic type alias named $F$ is declared,
22563-
with formal type parameters \List{X}{1}{s}.
22564-
\commentary{%
22565-
Each formal type parameter $X_j$ may have a bound,
22566-
but the bounds are never used in this context,
22567-
so we do not introduce metavariables for them.%
22568-
}
22569-
\end{itemize}
22570-
2257122582
\LMHash{}%
2257222583
Rule~\SrnRightFunction{} has as a premise that `$T$ is a function type'.
2257322584
This means that $T$ is a type of one of the forms introduced in
@@ -22676,7 +22687,7 @@ \subsubsection{Informal Subtype Rule Descriptions}
2267622687
the rule is also valid in any environment
2267722688
and the environment is never used explicitly,
2267822689
so we will not repeat that.
22679-
\Item{\SrnTop}{Top}
22690+
\Item{\SrnRightTop}{Top}
2268022691
Every type is a subtype of \code{Object},
2268122692
every type is a subtype of \DYNAMIC,
2268222693
and every type is a subtype of \VOID.
@@ -22688,19 +22699,11 @@ \subsubsection{Informal Subtype Rule Descriptions}
2268822699
(\ref{superBoundedTypes}).
2268922700
\Item{\SrnBottom}{Bottom}
2269022701
Every type is a supertype of $\bot$.
22691-
\Item{\SrnNull}{Null}
22692-
Every type other than $\bot$ is a supertype of \code{Null}.
22693-
\Item{\SrnLeftTypeAlias}{Type Alias Left}
22694-
An application of a type alias to some actual type arguments is
22695-
a subtype of another type $T$
22696-
if the expansion of the type alias to the type that it denotes
22697-
is a subtype of $T$.
22698-
Note that a non-generic type alias is handled by letting $s = 0$.
22699-
\Item{\SrnRightTypeAlias}{Type Alias Right}
22700-
A type $S$ is a subtype of an application of a type alias
22701-
if $S$ is a subtype of
22702-
the expansion of the type alias to the type that it denotes.
22703-
Note that a non-generic type alias is handled by letting $s = 0$.
22702+
\Item{\SrnNullOne}{Null 1}
22703+
\code{Null} is a subtype of every type of the form \code{$T$?}.
22704+
\Item{\SrnNullTwo}{Null 2}
22705+
\code{Null} is a subtype of \code{FutureOr<$T$>}
22706+
if \code{Null} is a subtype of $T$.
2270422707
\Item{\SrnLeftFutureOr}{Left FutureOr}
2270522708
The type \code{FutureOr<$S$>} is a subtype of a given type $T$
2270622709
if $S$ is a subtype of $T$ and \code{Future<$S$>} is a subtype of $T$,
@@ -23169,11 +23172,10 @@ \subsection{Type Normalization}
2316923172
(such as \code{Never} and $X$).
2317023173

2317123174
In particular, \SubtypeNE{S}{T} and \SubtypeNE{T}{S} holds if and only if
23172-
\NormalizedTypeOf{$T$} is syntactically equal to \NormalizedTypeOf{$S$},
23173-
modulo replacement of atomic top types,
23174-
and modulo replacement of terms derived from \synt{typeName}
23175-
denoting the same type
23176-
(such as \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
23175+
\NormalizedTypeOf{$T$} has the same canonical syntax as \NormalizedTypeOf{$S$}
23176+
(\ref{standardUpperBoundsAndStandardLowerBounds}),
23177+
modulo replacement of atomic top types
23178+
(e.g., \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
2317723179
}
2317823180

2317923181
\LMHash{}%
@@ -23381,8 +23383,8 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2338123383
}
2338223384

2338323385
\LMHash{}%
23384-
Consequently, when we say that two types $T_1$ and $T_2$ are
23385-
\IndexCustom{syntactically equal}{type!syntactically equal},
23386+
Consequently, when we say that two types $T_1$ and $T_2$ have the
23387+
\IndexCustom{same canonical syntax}{type!same canonical syntax},
2338623388
it refers to the situation where both $T_1$ and $T_2$ have been
2338723389
transformed in the above sense
2338823390
(\commentary{by alpha-renaming, alias expansion, and canonical naming}).
@@ -23616,7 +23618,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2361623618
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
2361723619

2361823620
\noindent
23619-
such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types,
23621+
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax,
2362023622
and both have the same number of required positional parameters.
2362123623
Let $q$ be $\metavar{min}(k, l)$,
2362223624
let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
@@ -23646,7 +23648,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2364623648
and consider the case where the following is satisfied:
2364723649

2364823650
\begin{itemize}
23649-
\item Each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23651+
\item Each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2365023652
\item For each required entry named $n$ in $\metavar{Named}_1$,
2365123653
$\metavar{Named}_2$ contains an entry named $n$
2365223654
(\commentary{which may or may not be required}).
@@ -23871,7 +23873,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2387123873
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
2387223874

2387323875
\noindent
23874-
such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23876+
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2387523877
Let $q$ be $\metavar{max}(k, l)$,
2387623878
let $T_3$ be \LowerBoundType{$T_1$}{$T_2$},
2387723879
let $B_{3i}$ be $B_{1i}$, and
@@ -23908,7 +23910,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2390823910
where $\metavar{Named}_j$ declares a non-empty set of named parameters
2390923911
with names $\metavar{NamesOfNamed}_j$, $j \in 1 .. 2$,
2391023912
and consider the case where
23911-
each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23913+
each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2391223914
Then \DefEqualsNewline{\LowerBoundType{$U_1$}{$U_2$}}{%U_3}, where $U_3$ is
2391323915
\code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
2391423916
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\,$P_{3k}$,\,$\metavar{Named}_3$)}},
@@ -24452,9 +24454,10 @@ \subsection{Intersection Types}
2445224454

2445324455
\commentary{%
2445424456
An intersection type will never occur as a nested type, that is,
24455-
it will never occurs as
24457+
it never occurs as or in
2445624458
an actual type argument in a parameterized type,
24457-
as a parameter type or a return type in a function type,
24459+
a parameter type or a return type in a function type,
24460+
a type parameter bound,
2445824461
as the right operand of another intersection type,
2445924462
or as the operand of the nullable type operator \lit{?}.%
2446024463
}
@@ -24615,24 +24618,8 @@ \subsection{Type Type}
2461524618
and let $S_j$ be \NormalizedTypeOf{$U_j$}, for $j \in 1 .. 2$
2461624619
(\ref{typeNormalization}).
2461724620
We then say that $T_1$ and $T_2$ are the \Index{same type}
24618-
if{}f $S_1$ and $S_2$ are syntactically equal,
24619-
up to equivalence of bound variables,
24620-
and up to replacement of identifiers or qualified identifiers
24621-
resolving to the same type declaration
24622-
(\commentary{%
24623-
e.g., \code{C} and \code{prefix.C} could resolve to
24624-
the same class declaration%
24625-
}),
24626-
and excluding the case where two identifiers or qualified identifiers
24627-
occurring at corresponding positions in $S_1$ and $S_2$
24628-
are syntactically identical,
24629-
but resolve to different declarations
24630-
(\commentary{%
24631-
e.g., one occurrence of \code{C} could resolve to a
24632-
class declaration imported from a library $L_1$,
24633-
and another occurrence of \code{C} could resolve to a
24634-
class declaration imported from a different library $L_2$%
24635-
}).
24621+
if{}f $S_1$ and $S_2$ are have the same canonical syntax
24622+
(\ref{standardUpperBoundsAndStandardLowerBounds}).
2463624623

2463724624
\LMHash{}%
2463824625
A reified type identifies the underlying type in the sense that
@@ -26042,7 +26029,7 @@ \section*{Appendix: Algorithmic Subtyping}
2604226029
\end{minipage}
2604326030
%
2604426031
\caption{Algorithmic subtype rules.
26045-
Rules \SrnTop--\SrnSuperinterface{} are unchanged and hence omitted here.}
26032+
Rules \SrnRightTop--\SrnSuperinterface{} are unchanged and hence omitted here.}
2604626033
\label{fig:algorithmicSubtypeRules}
2604726034
\end{figure}
2604826035

@@ -26103,7 +26090,7 @@ \section*{Appendix: Algorithmic Subtyping}
2610326090
followed by the rule whose number is $N+1$.
2610426091
\commentary{%
2610526092
So the order is
26106-
\AppSrnReflexivity, \SrnTop--\SrnTypeVariableReflexivityA,
26093+
\AppSrnReflexivity, \SrnRightTop--\SrnTypeVariableReflexivityA,
2610726094
\AppSrnTypeVariableReflexivityB, \AppSrnTypeVariableReflexivityC,
2610826095
\AppSrnTypeVariableReflexivityD,
2610926096
\SrnRightPromotedVariable, and so on.%

0 commit comments

Comments
 (0)