@@ -23648,7 +23648,7 @@ \section*{Appendix: Algorithmic Subtyping}
23648
23648
then \SubtypeNE{T_0}{T_1} if{}f \SubtypeNE{S_i}{T_1} for some $i$.
23649
23649
\item
23650
23650
\textbf{Positional Function Types:}
23651
- $T_0$ is
23651
+ If $T_0$ is
23652
23652
23653
23653
\code{$U_0$ \FUNCTION<%
23654
23654
$X_0$\,\EXTENDS\,$B_{00}$, \ldots, $X_k$\,\EXTENDS\,$B_{0k}$>(%
@@ -23662,7 +23662,7 @@ \section*{Appendix: Algorithmic Subtyping}
23662
23662
$S_0$\,$y_0$, \ldots, $S_p$\,$y_p$, %
23663
23663
[$S_{p+1}$\,$y_{p+1}$, \ldots, $S_q$\,$y_q$])}
23664
23664
23665
- such that each of the following criteria is satisfied,
23665
+ then \SubtypeNE{T_0}{T_1} if{}f each of the following criteria is satisfied,
23666
23666
where the $Z_i$ are fresh type variables with bounds
23667
23667
$B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
23668
23668
@@ -23677,7 +23677,7 @@ \section*{Appendix: Algorithmic Subtyping}
23677
23677
\end{itemize}
23678
23678
\item
23679
23679
\textbf{Named Function Types:}
23680
- $T_0$ is
23680
+ If $T_0$ is
23681
23681
23682
23682
\code{%
23683
23683
$U_0$ \FUNCTION<$X_0$\,\EXTENDS\,$B_{00}$, \ldots, %
@@ -23695,7 +23695,7 @@ \section*{Appendix: Algorithmic Subtyping}
23695
23695
\{$r_{1,n+1}$\,$S_{n+1}$\,$y_{n+1}$, \ldots, $r_{1q}$\,$S_q$\,$y_q$\})}
23696
23696
23697
23697
where $r_{1j}$ is empty or \REQUIRED{} for $j \in n+1 .. q$
23698
- and the following criteria are all satisfied,
23698
+ then \SubtypeNE{T_0}{T_1} if{}f the following criteria are all satisfied,
23699
23699
where \List{Z}{1}{k} are fresh type variables with bounds
23700
23700
$B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
23701
23701
0 commit comments