@@ -22388,43 +22388,41 @@ \subsection{Subtypes}
22388
22388
}
22389
22389
22390
22390
\LMHash{}%
22391
- %% TODO(eernst): Introduce these specialized intersection types
22392
- %% in a suitable location where type promotion is specified.
22393
- Types of the form
22394
- \IndexCustom{$X \& S$}{type!of the form $X \& S$}%
22395
- \IndexExtraEntry{\&@$X \& S$}
22396
- arise during static analysis due to type promotion
22391
+ Intersection types
22392
+ (\commentary{types of the form \code{$X$\,\&\,$S$}}),
22393
+ may arise during static analysis due to type promotion
22397
22394
(\ref{typePromotion}).
22398
22395
They never occur during execution,
22399
- they are never a type argument of another type,
22400
- nor a return type or a formal parameter type,
22401
- and it is always the case that $S$ is a subtype of the bound of $X$.
22402
- \commentary{%
22403
- The motivation for $X \& S$ is that it represents
22404
- the type of a local variable $v$
22405
- whose type is declared to be the type variable $X$,
22406
- and which is known to have type $S$ due to promotion.
22407
- Similarly, $X \& S$ may be seen as an intersection type,
22408
- which is a subtype of $X$ and also a subtype of $S$.
22409
- Intersection types are \emph{not} supported in general,
22410
- only in this special case.%
22411
- }
22412
- Every other form of type may occur during static analysis
22413
- as well as during execution,
22414
- and the subtype relationship is always determined in the same way.
22396
+ and there are many other restrictions on where they can occur
22397
+ (\ref{intersectionTypes}).
22398
+ However, their subtype relations are specified without restrictions.
22399
+ \commentary{%
22400
+ It causes no problems that these rules will not be used
22401
+ in their full generality.%
22402
+ }
22415
22403
22404
+ !!! Renumber!
22416
22405
% Subtype Rule Numbering
22417
22406
\newcommand{\SrnReflexivity}{1}
22418
- \newcommand{\SrnTop}{2}
22419
- \newcommand{\SrnBottom}{3}
22420
- \newcommand{\SrnNull}{4}
22421
- \newcommand{\SrnLeftTypeAlias}{5}
22422
- \newcommand{\SrnRightTypeAlias}{6}
22407
+ \newcommand{\SrnRightTop}{2}
22408
+ \newcommand{\SrnLeftTop}{3}
22409
+ \newcommand{\SrnBottom}{4}
22410
+ \newcommand{\SrnRightObjectOne}{5.1}
22411
+ \newcommand{\SrnRightObjectTwo}{5.2}
22412
+ \newcommand{\SrnRightObjectThree}{5.3}
22413
+ \newcommand{\SrnRightObjectFour}{5.4}
22414
+ \newcommand{\SrnNullOne}{6.1}
22415
+ \newcommand{\SrnNullTwo}{6.2}
22423
22416
\newcommand{\SrnLeftFutureOr}{7}
22417
+ \newcommand{\SrnLeftNullable}{7b}
22424
22418
\newcommand{\SrnTypeVariableReflexivityA}{8}
22425
22419
\newcommand{\SrnRightPromotedVariable}{9}
22426
22420
\newcommand{\SrnRightFutureOrA}{10}
22427
22421
\newcommand{\SrnRightFutureOrB}{11}
22422
+ \newcommand{\SrnRightNullableOne}{11b.1}
22423
+ \newcommand{\SrnRightNullableTwo}{11b.2}
22424
+ \newcommand{\SrnRightNullableThree}{11b.3}
22425
+ \newcommand{\SrnRightNullableFour}{11b.4}
22428
22426
\newcommand{\SrnLeftPromotedVariable}{12}
22429
22427
\newcommand{\SrnLeftVariableBound}{13}
22430
22428
\newcommand{\SrnRightFunction}{14}
@@ -22445,34 +22443,47 @@ \subsection{Subtypes}
22445
22443
\def\RuleRawRaw#1#2#3#4{\centerline{\inference[#1]{#3}{#4}}\VSP}
22446
22444
%
22447
22445
\begin{minipage}[c]{0.49\textwidth}
22448
- \Axiom{\SrnReflexivity}{Reflexivity}{S}{S}
22449
- \Axiom{\SrnBottom}{Left Bottom}{\bot}{T}
22446
+ \Axiom{\SrnReflexivity}{Reflexivity}{T}{T}
22447
+ \Axiom{\SrnBottom}{Left Bottom}{\code{Never}}{T}
22448
+ \RuleRaw{\SrnRightObjectTwo}{Right Object 2}{%
22449
+ \SubtypeStd{S}{\code{Object}}}{\code{$X$\,\&\,$S$}}{\code{Object}}
22450
+ \RuleRaw{\SrnRightObjectThree}{Right Object 3}{%
22451
+ \SubtypeStd{S}{\code{Object}}}{\code{FutureOr<$S$>}}{\code{Object}}
22452
+ \Axiom{\SrnNullOne}{Left Null One}{\code{Null}}{\code{$T$?}}
22450
22453
\end{minipage}
22451
22454
\begin{minipage}[c]{0.49\textwidth}
22452
- \RuleRaw{\SrnTop}{Right Top}{T \in \{\code{Object}, \DYNAMIC, \VOID\}}{S}{T}
22453
- \RuleRaw{\SrnNull}{Left Null}{T \not= \bot}{\code{Null}}{T}
22455
+ \RuleRaw{\SrnRightTop}{Right Top}{%
22456
+ T \in \{\code{Object?}, \DYNAMIC, \VOID\}}{S}{T}
22457
+ \RuleRaw{\SrnLeftTop}{Left Top}{%
22458
+ S \in \{\DYNAMIC, \VOID\} & \SubtypeStd{\code{Object?}}{T}}{S}{T}
22459
+ \RuleRaw{\SrnRightObjectOne}{Right Object 1}{%
22460
+ \code{$X$\,\EXTENDS\,$B$} & \SubtypeStd{B}{\code{Object}}%
22461
+ }{X}{\code{Object}}
22462
+ \RuleRaw{\SrnRightObjectFour}{Right Object 4}{%
22463
+ $S$\,\not\in \{\code{Null}, \DYNAMIC, \VOID\}\\
22464
+ \mbox{$S$ is not of the form \code{$U$?}, $X$, %
22465
+ \code{$X$\,\&\,$U$}, \code{FutureOr<$U$>}}}{S}{\code{Object}}
22466
+ \Rule{\SrnNullTwo}{Left Null Two}{\code{Null}}{T}{%
22467
+ \code{Null}}{\code{FutureOr<$T$>}}
22454
22468
\end{minipage}
22455
22469
22456
- \ExtraVSP
22457
- \RuleRaw{\SrnLeftTypeAlias}{Type Alias Left}{%
22458
- \code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22459
- \SubtypeStd{[S_1/X_1,\ldots,S_s/X_s]U}{T}}{\code{$F$<\List{S}{1}{s}>}}{T}
22460
- \RuleRaw{\SrnRightTypeAlias}{Type Alias Right}{%
22461
- \code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22462
- \SubtypeStd{S}{[T_1/X_1,\ldots,T_s/X_s]U}}{S}{\code{$F$<\List{T}{1}{s}>}}
22463
-
22464
22470
\begin{minipage}[c]{0.49\textwidth}
22465
22471
\RuleTwo{\SrnLeftFutureOr}{Left FutureOr}{S}{T}{%
22466
22472
\code{Future<$S$>}}{T}{\code{FutureOr<$S$>}}{T}
22467
22473
\RuleTwo{\SrnRightPromotedVariable}{Right Promoted Variable}{S}{X}{S}{T}{%
22468
22474
S}{X \& T}
22469
22475
\Rule{\SrnRightFutureOrB}{Right FutureOr B}{S}{T}{S}{\code{FutureOr<$T$>}}
22476
+ \Rule{\SrnRightNullableTwo}{Right Nullable 2}{S}{\code{Null}}{S}{%
22477
+ \code{$T$?}}
22470
22478
\Rule{\SrnLeftVariableBound}{Left Variable Bound}{\Delta(X)}{T}{X}{T}
22471
22479
\end{minipage}
22472
22480
\begin{minipage}[c]{0.49\textwidth}
22481
+ \RuleTwo{\SrnLeftNullable}{Left Nullable}{S}{T}{\code{Null}}{T}{
22482
+ \code{$S$?}}{T}
22473
22483
\Axiom{\SrnTypeVariableReflexivityA}{Left Promoted Variable A}{X \& S}{X}
22474
22484
\Rule{\SrnRightFutureOrA}{Right FutureOr A}{S}{\code{Future<$T$>}}{%
22475
22485
S}{\code{FutureOr<$T$>}}
22486
+ \Rule{\SrnRightNullableOne}{Right Nullable 1}{S}{T}{S}{\code{$T$?}}
22476
22487
\Rule{\SrnLeftPromotedVariable}{Left Promoted Variable B}{S}{T}{X \& S}{T}
22477
22488
\RuleRaw{\SrnRightFunction}{Right Function}{T\mbox{ is a function type}}{%
22478
22489
T}{\FUNCTION}
@@ -22508,6 +22519,7 @@ \subsection{Subtypes}
22508
22519
\forall j \in 1 .. s\!:\;\SubtypeStd{S_j}{T_j}}{%
22509
22520
\code{$C$<\List{S}{1}{s}>}}{\code{$C$<\List{T}{1}{s}>}}
22510
22521
\ExtraVSP
22522
+ %% !!! Should include mixins (and other non-class interface types, if any).
22511
22523
\RuleRaw{\SrnSuperinterface}{Superinterface}{%
22512
22524
\code{\CLASS{} $C$<\TypeParametersNoBounds{X}{s}>\,\ldots\,\{\}}\\
22513
22525
\Superinterface{\code{$D$<\List{T}{1}{m}>}}{C} &
@@ -22559,10 +22571,9 @@ \subsubsection{Subtype Rules}
22559
22571
Whenever a rule contains one or more meta-variables,
22560
22572
that rule can be used by
22561
22573
\IndexCustom{instantiating}{instantiation!subtype rule}
22562
- it, that is, by consistently replacing
22563
- each occurrence of a given meta-variable by
22564
- concrete syntax denoting the same type
22565
- (\ref{typeType}).
22574
+ it, that is, by choosing a specific type $T$ and metavariable $\cal V$,
22575
+ and then consistently replacing all occurrences of $\cal V$ by
22576
+ concrete syntax denoting $T$.
22566
22577
22567
22578
\commentary{%
22568
22579
In general, this means that two or more occurrences of
@@ -22575,11 +22586,12 @@ \subsubsection{Subtype Rules}
22575
22586
can be used to conclude
22576
22587
\Subtype{\emptyset}{\code{int}}{\code{int}},
22577
22588
where $\emptyset$ denotes the empty environment
22578
- (any environment would suffice because no type variables occur).
22589
+ (any environment would suffice because no type variables occur).%
22590
+ }
22579
22591
22580
- However, the wording `denoting the same type' above covers
22581
- additional situations as well :
22582
- For instance, we may use rule~\SrnReflexivity{}
22592
+ \commentary{%
22593
+ The phrases `same type' and `identical syntax' deserves some extra scrutiny :
22594
+ We may, e.g., use rule~\SrnReflexivity{}
22583
22595
to show that \code{p1.C} is a subtype of
22584
22596
\code{p2.C} when \code{C} is a class declared in a
22585
22597
library $L$ which is imported by libraries $L_1$ and $L_2$ and
@@ -22608,8 +22620,27 @@ \subsubsection{Subtype Rules}
22608
22620
}
22609
22621
22610
22622
\LMHash{}%
22611
- Every \synt{typeName} used in a type mentioned in this section is assumed to
22612
- have no compile-time error and denote a type.
22623
+ In this section,
22624
+ the notion of two types $T_1$ and $T_2$ being the same type
22625
+ is taken to mean that $T_1$ and $T_2$ have the same canonical syntax
22626
+ (\ref{standardUpperBoundsAndStandardLowerBounds}).
22627
+
22628
+ \commentary{%
22629
+ In other words, we eliminate the difficulties associated with
22630
+ different syntax denoting the same type,
22631
+ and different types denoted by the same syntax,
22632
+ by assuming that every type in the program has been expressed
22633
+ in a manner where those situations never occur,
22634
+ because each type is denoted by the same globally unique syntax everywhere.
22635
+ Note that `same canonical syntax' also requires
22636
+ transitive expansion of all type aliases
22637
+ (\ref{typedef}).%
22638
+ }
22639
+
22640
+ \LMHash{}%
22641
+ Every \synt{typeName} used in a type mentioned in this section
22642
+ is assumed to have no compile-time error,
22643
+ and it is assumed to denote a type.
22613
22644
22614
22645
\commentary{%
22615
22646
That is, no subtyping relationship can be proven for
@@ -22657,9 +22688,11 @@ \subsubsection{Subtype Rules}
22657
22688
So
22658
22689
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double} \} \uplus
22659
22690
\{ \code{Z} \mapsto \code{Object} \} =
22660
- \{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, \code{Z} \mapsto \code{Object} \}$
22691
+ \{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, %
22692
+ \code{Z} \mapsto \code{Object} \}$
22661
22693
and
22662
- $\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{FutureOr<List<double>{}>} \} \uplus
22694
+ $\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto %
22695
+ \code{FutureOr<List<double>{}>} \} \uplus
22663
22696
\{ \code{Y} \mapsto \code{int} \} =
22664
22697
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{int} \}$.
22665
22698
Note that operator $\uplus$ is concerned with scopes and shadowing,
@@ -22709,28 +22742,6 @@ \subsubsection{Being a subtype}
22709
22742
each of the premises of $R$,
22710
22743
continuing until a rule with no premises is reached.
22711
22744
22712
- \LMHash{}%
22713
- The first premise in the
22714
- rules~\SrnLeftTypeAlias{} and~\SrnRightTypeAlias{}
22715
- is a type alias declaration.
22716
- This premise is satisfied in each of the following situations:
22717
-
22718
- \begin{itemize}
22719
- \item A non-generic type alias named $F$ is declared.
22720
- In this case $s$ is zero,
22721
- no assumptions are made about the existence
22722
- of any formal type parameters,
22723
- and actual type argument lists are omitted everywhere in the rule.
22724
- \item We may choose $s$ and \List{X}{1}{s} such that the following holds:
22725
- A generic type alias named $F$ is declared,
22726
- with formal type parameters \List{X}{1}{s}.
22727
- \commentary{%
22728
- Each formal type parameter $X_j$ may have a bound,
22729
- but the bounds are never used in this context,
22730
- so we do not introduce metavariables for them.%
22731
- }
22732
- \end{itemize}
22733
-
22734
22745
\LMHash{}%
22735
22746
Rule~\SrnRightFunction{} has as a premise that `$T$ is a function type'.
22736
22747
This means that $T$ is a type of one of the forms introduced in
@@ -22839,7 +22850,7 @@ \subsubsection{Informal Subtype Rule Descriptions}
22839
22850
the rule is also valid in any environment
22840
22851
and the environment is never used explicitly,
22841
22852
so we will not repeat that.
22842
- \Item{\SrnTop }{Top}
22853
+ \Item{\SrnRightTop }{Top}
22843
22854
Every type is a subtype of \code{Object},
22844
22855
every type is a subtype of \DYNAMIC,
22845
22856
and every type is a subtype of \VOID.
@@ -22851,19 +22862,11 @@ \subsubsection{Informal Subtype Rule Descriptions}
22851
22862
(\ref{superBoundedTypes}).
22852
22863
\Item{\SrnBottom}{Bottom}
22853
22864
Every type is a supertype of $\bot$.
22854
- \Item{\SrnNull}{Null}
22855
- Every type other than $\bot$ is a supertype of \code{Null}.
22856
- \Item{\SrnLeftTypeAlias}{Type Alias Left}
22857
- An application of a type alias to some actual type arguments is
22858
- a subtype of another type $T$
22859
- if the expansion of the type alias to the type that it denotes
22860
- is a subtype of $T$.
22861
- Note that a non-generic type alias is handled by letting $s = 0$.
22862
- \Item{\SrnRightTypeAlias}{Type Alias Right}
22863
- A type $S$ is a subtype of an application of a type alias
22864
- if $S$ is a subtype of
22865
- the expansion of the type alias to the type that it denotes.
22866
- Note that a non-generic type alias is handled by letting $s = 0$.
22865
+ \Item{\SrnNullOne}{Null 1}
22866
+ \code{Null} is a subtype of every type of the form \code{$T$?}.
22867
+ \Item{\SrnNullTwo}{Null 2}
22868
+ \code{Null} is a subtype of \code{FutureOr<$T$>}
22869
+ if \code{Null} is a subtype of $T$.
22867
22870
\Item{\SrnLeftFutureOr}{Left FutureOr}
22868
22871
The type \code{FutureOr<$S$>} is a subtype of a given type $T$
22869
22872
if $S$ is a subtype of $T$ and \code{Future<$S$>} is a subtype of $T$,
@@ -23334,11 +23337,10 @@ \subsection{Type Normalization}
23334
23337
(such as \code{Never} and $X$).
23335
23338
23336
23339
In particular, \SubtypeNE{S}{T} and \SubtypeNE{T}{S} holds if and only if
23337
- \NormalizedTypeOf{$T$} is syntactically equal to \NormalizedTypeOf{$S$},
23338
- modulo replacement of atomic top types,
23339
- and modulo replacement of terms derived from \synt{typeName}
23340
- denoting the same type
23341
- (such as \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
23340
+ \NormalizedTypeOf{$T$} has the same canonical syntax as \NormalizedTypeOf{$S$}
23341
+ (\ref{standardUpperBoundsAndStandardLowerBounds}),
23342
+ modulo replacement of atomic top types
23343
+ (e.g., \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
23342
23344
}
23343
23345
23344
23346
\LMHash{}%
@@ -23546,8 +23548,8 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23546
23548
}
23547
23549
23548
23550
\LMHash{}%
23549
- Consequently, when we say that two types $T_1$ and $T_2$ are
23550
- \IndexCustom{syntactically equal }{type!syntactically equal },
23551
+ Consequently, when we say that two types $T_1$ and $T_2$ have the
23552
+ \IndexCustom{same canonical syntax }{type!same canonical syntax },
23551
23553
it refers to the situation where both $T_1$ and $T_2$ have been
23552
23554
transformed in the above sense
23553
23555
(\commentary{by alpha-renaming, alias expansion, and canonical naming}).
@@ -23781,7 +23783,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23781
23783
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
23782
23784
23783
23785
\noindent
23784
- such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types ,
23786
+ such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax ,
23785
23787
and both have the same number of required positional parameters.
23786
23788
Let $q$ be $\metavar{min}(k, l)$,
23787
23789
let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
@@ -23811,7 +23813,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
23811
23813
and consider the case where the following is satisfied:
23812
23814
23813
23815
\begin{itemize}
23814
- \item Each $B_{1i}$ and $B_{2i}$ are syntactically equal types .
23816
+ \item Each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax .
23815
23817
\item For each required entry named $n$ in $\metavar{Named}_1$,
23816
23818
$\metavar{Named}_2$ contains an entry named $n$
23817
23819
(\commentary{which may or may not be required}).
@@ -24036,7 +24038,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
24036
24038
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
24037
24039
24038
24040
\noindent
24039
- such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types .
24041
+ such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax .
24040
24042
Let $q$ be $\metavar{max}(k, l)$,
24041
24043
let $T_3$ be \LowerBoundType{$T_1$}{$T_2$},
24042
24044
let $B_{3i}$ be $B_{1i}$, and
@@ -24073,7 +24075,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
24073
24075
where $\metavar{Named}_j$ declares a non-empty set of named parameters
24074
24076
with names $\metavar{NamesOfNamed}_j$, $j \in 1 .. 2$,
24075
24077
and consider the case where
24076
- each $B_{1i}$ and $B_{2i}$ are syntactically equal types .
24078
+ each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax .
24077
24079
Then \DefEqualsNewline{\LowerBoundType{$U_1$}{$U_2$}}{%U_3}, where $U_3$ is
24078
24080
\code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
24079
24081
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\,$P_{3k}$,\,$\metavar{Named}_3$)}},
@@ -24617,9 +24619,10 @@ \subsection{Intersection Types}
24617
24619
24618
24620
\commentary{%
24619
24621
An intersection type will never occur as a nested type, that is,
24620
- it will never occurs as
24622
+ it never occurs as or in
24621
24623
an actual type argument in a parameterized type,
24622
- as a parameter type or a return type in a function type,
24624
+ a parameter type or a return type in a function type,
24625
+ a type parameter bound,
24623
24626
as the right operand of another intersection type,
24624
24627
or as the operand of the nullable type operator \lit{?}.%
24625
24628
}
@@ -24780,24 +24783,8 @@ \subsection{Type Type}
24780
24783
and let $S_j$ be \NormalizedTypeOf{$U_j$}, for $j \in 1 .. 2$
24781
24784
(\ref{typeNormalization}).
24782
24785
We then say that $T_1$ and $T_2$ are the \Index{same type}
24783
- if{}f $S_1$ and $S_2$ are syntactically equal,
24784
- up to equivalence of bound variables,
24785
- and up to replacement of identifiers or qualified identifiers
24786
- resolving to the same type declaration
24787
- (\commentary{%
24788
- e.g., \code{C} and \code{prefix.C} could resolve to
24789
- the same class declaration%
24790
- }),
24791
- and excluding the case where two identifiers or qualified identifiers
24792
- occurring at corresponding positions in $S_1$ and $S_2$
24793
- are syntactically identical,
24794
- but resolve to different declarations
24795
- (\commentary{%
24796
- e.g., one occurrence of \code{C} could resolve to a
24797
- class declaration imported from a library $L_1$,
24798
- and another occurrence of \code{C} could resolve to a
24799
- class declaration imported from a different library $L_2$%
24800
- }).
24786
+ if{}f $S_1$ and $S_2$ are have the same canonical syntax
24787
+ (\ref{standardUpperBoundsAndStandardLowerBounds}).
24801
24788
24802
24789
\LMHash{}%
24803
24790
A reified type identifies the underlying type in the sense that
@@ -26207,7 +26194,7 @@ \section*{Appendix: Algorithmic Subtyping}
26207
26194
\end{minipage}
26208
26195
%
26209
26196
\caption{Algorithmic subtype rules.
26210
- Rules \SrnTop --\SrnSuperinterface{} are unchanged and hence omitted here.}
26197
+ Rules \SrnRightTop --\SrnSuperinterface{} are unchanged and hence omitted here.}
26211
26198
\label{fig:algorithmicSubtypeRules}
26212
26199
\end{figure}
26213
26200
@@ -26268,7 +26255,7 @@ \section*{Appendix: Algorithmic Subtyping}
26268
26255
followed by the rule whose number is $N+1$.
26269
26256
\commentary{%
26270
26257
So the order is
26271
- \AppSrnReflexivity, \SrnTop --\SrnTypeVariableReflexivityA,
26258
+ \AppSrnReflexivity, \SrnRightTop --\SrnTypeVariableReflexivityA,
26272
26259
\AppSrnTypeVariableReflexivityB, \AppSrnTypeVariableReflexivityC,
26273
26260
\AppSrnTypeVariableReflexivityD,
26274
26261
\SrnRightPromotedVariable, and so on.%
0 commit comments