Skip to content

Commit e4e4860

Browse files
committed
Rebase
1 parent e3aa306 commit e4e4860

File tree

1 file changed

+107
-120
lines changed

1 file changed

+107
-120
lines changed

specification/dartLangSpec.tex

Lines changed: 107 additions & 120 deletions
Original file line numberDiff line numberDiff line change
@@ -22388,43 +22388,41 @@ \subsection{Subtypes}
2238822388
}
2238922389

2239022390
\LMHash{}%
22391-
%% TODO(eernst): Introduce these specialized intersection types
22392-
%% in a suitable location where type promotion is specified.
22393-
Types of the form
22394-
\IndexCustom{$X \& S$}{type!of the form $X \& S$}%
22395-
\IndexExtraEntry{\&@$X \& S$}
22396-
arise during static analysis due to type promotion
22391+
Intersection types
22392+
(\commentary{types of the form \code{$X$\,\&\,$S$}}),
22393+
may arise during static analysis due to type promotion
2239722394
(\ref{typePromotion}).
2239822395
They never occur during execution,
22399-
they are never a type argument of another type,
22400-
nor a return type or a formal parameter type,
22401-
and it is always the case that $S$ is a subtype of the bound of $X$.
22402-
\commentary{%
22403-
The motivation for $X \& S$ is that it represents
22404-
the type of a local variable $v$
22405-
whose type is declared to be the type variable $X$,
22406-
and which is known to have type $S$ due to promotion.
22407-
Similarly, $X \& S$ may be seen as an intersection type,
22408-
which is a subtype of $X$ and also a subtype of $S$.
22409-
Intersection types are \emph{not} supported in general,
22410-
only in this special case.%
22411-
}
22412-
Every other form of type may occur during static analysis
22413-
as well as during execution,
22414-
and the subtype relationship is always determined in the same way.
22396+
and there are many other restrictions on where they can occur
22397+
(\ref{intersectionTypes}).
22398+
However, their subtype relations are specified without restrictions.
22399+
\commentary{%
22400+
It causes no problems that these rules will not be used
22401+
in their full generality.%
22402+
}
2241522403

22404+
!!! Renumber!
2241622405
% Subtype Rule Numbering
2241722406
\newcommand{\SrnReflexivity}{1}
22418-
\newcommand{\SrnTop}{2}
22419-
\newcommand{\SrnBottom}{3}
22420-
\newcommand{\SrnNull}{4}
22421-
\newcommand{\SrnLeftTypeAlias}{5}
22422-
\newcommand{\SrnRightTypeAlias}{6}
22407+
\newcommand{\SrnRightTop}{2}
22408+
\newcommand{\SrnLeftTop}{3}
22409+
\newcommand{\SrnBottom}{4}
22410+
\newcommand{\SrnRightObjectOne}{5.1}
22411+
\newcommand{\SrnRightObjectTwo}{5.2}
22412+
\newcommand{\SrnRightObjectThree}{5.3}
22413+
\newcommand{\SrnRightObjectFour}{5.4}
22414+
\newcommand{\SrnNullOne}{6.1}
22415+
\newcommand{\SrnNullTwo}{6.2}
2242322416
\newcommand{\SrnLeftFutureOr}{7}
22417+
\newcommand{\SrnLeftNullable}{7b}
2242422418
\newcommand{\SrnTypeVariableReflexivityA}{8}
2242522419
\newcommand{\SrnRightPromotedVariable}{9}
2242622420
\newcommand{\SrnRightFutureOrA}{10}
2242722421
\newcommand{\SrnRightFutureOrB}{11}
22422+
\newcommand{\SrnRightNullableOne}{11b.1}
22423+
\newcommand{\SrnRightNullableTwo}{11b.2}
22424+
\newcommand{\SrnRightNullableThree}{11b.3}
22425+
\newcommand{\SrnRightNullableFour}{11b.4}
2242822426
\newcommand{\SrnLeftPromotedVariable}{12}
2242922427
\newcommand{\SrnLeftVariableBound}{13}
2243022428
\newcommand{\SrnRightFunction}{14}
@@ -22445,34 +22443,47 @@ \subsection{Subtypes}
2244522443
\def\RuleRawRaw#1#2#3#4{\centerline{\inference[#1]{#3}{#4}}\VSP}
2244622444
%
2244722445
\begin{minipage}[c]{0.49\textwidth}
22448-
\Axiom{\SrnReflexivity}{Reflexivity}{S}{S}
22449-
\Axiom{\SrnBottom}{Left Bottom}{\bot}{T}
22446+
\Axiom{\SrnReflexivity}{Reflexivity}{T}{T}
22447+
\Axiom{\SrnBottom}{Left Bottom}{\code{Never}}{T}
22448+
\RuleRaw{\SrnRightObjectTwo}{Right Object 2}{%
22449+
\SubtypeStd{S}{\code{Object}}}{\code{$X$\,\&\,$S$}}{\code{Object}}
22450+
\RuleRaw{\SrnRightObjectThree}{Right Object 3}{%
22451+
\SubtypeStd{S}{\code{Object}}}{\code{FutureOr<$S$>}}{\code{Object}}
22452+
\Axiom{\SrnNullOne}{Left Null One}{\code{Null}}{\code{$T$?}}
2245022453
\end{minipage}
2245122454
\begin{minipage}[c]{0.49\textwidth}
22452-
\RuleRaw{\SrnTop}{Right Top}{T \in \{\code{Object}, \DYNAMIC, \VOID\}}{S}{T}
22453-
\RuleRaw{\SrnNull}{Left Null}{T \not= \bot}{\code{Null}}{T}
22455+
\RuleRaw{\SrnRightTop}{Right Top}{%
22456+
T \in \{\code{Object?}, \DYNAMIC, \VOID\}}{S}{T}
22457+
\RuleRaw{\SrnLeftTop}{Left Top}{%
22458+
S \in \{\DYNAMIC, \VOID\} & \SubtypeStd{\code{Object?}}{T}}{S}{T}
22459+
\RuleRaw{\SrnRightObjectOne}{Right Object 1}{%
22460+
\code{$X$\,\EXTENDS\,$B$} & \SubtypeStd{B}{\code{Object}}%
22461+
}{X}{\code{Object}}
22462+
\RuleRaw{\SrnRightObjectFour}{Right Object 4}{%
22463+
$S$\,\not\in \{\code{Null}, \DYNAMIC, \VOID\}\\
22464+
\mbox{$S$ is not of the form \code{$U$?}, $X$, %
22465+
\code{$X$\,\&\,$U$}, \code{FutureOr<$U$>}}}{S}{\code{Object}}
22466+
\Rule{\SrnNullTwo}{Left Null Two}{\code{Null}}{T}{%
22467+
\code{Null}}{\code{FutureOr<$T$>}}
2245422468
\end{minipage}
2245522469

22456-
\ExtraVSP
22457-
\RuleRaw{\SrnLeftTypeAlias}{Type Alias Left}{%
22458-
\code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22459-
\SubtypeStd{[S_1/X_1,\ldots,S_s/X_s]U}{T}}{\code{$F$<\List{S}{1}{s}>}}{T}
22460-
\RuleRaw{\SrnRightTypeAlias}{Type Alias Right}{%
22461-
\code{\TYPEDEF{} $F$<\TypeParametersNoBounds{X}{s}> = U} &
22462-
\SubtypeStd{S}{[T_1/X_1,\ldots,T_s/X_s]U}}{S}{\code{$F$<\List{T}{1}{s}>}}
22463-
2246422470
\begin{minipage}[c]{0.49\textwidth}
2246522471
\RuleTwo{\SrnLeftFutureOr}{Left FutureOr}{S}{T}{%
2246622472
\code{Future<$S$>}}{T}{\code{FutureOr<$S$>}}{T}
2246722473
\RuleTwo{\SrnRightPromotedVariable}{Right Promoted Variable}{S}{X}{S}{T}{%
2246822474
S}{X \& T}
2246922475
\Rule{\SrnRightFutureOrB}{Right FutureOr B}{S}{T}{S}{\code{FutureOr<$T$>}}
22476+
\Rule{\SrnRightNullableTwo}{Right Nullable 2}{S}{\code{Null}}{S}{%
22477+
\code{$T$?}}
2247022478
\Rule{\SrnLeftVariableBound}{Left Variable Bound}{\Delta(X)}{T}{X}{T}
2247122479
\end{minipage}
2247222480
\begin{minipage}[c]{0.49\textwidth}
22481+
\RuleTwo{\SrnLeftNullable}{Left Nullable}{S}{T}{\code{Null}}{T}{
22482+
\code{$S$?}}{T}
2247322483
\Axiom{\SrnTypeVariableReflexivityA}{Left Promoted Variable A}{X \& S}{X}
2247422484
\Rule{\SrnRightFutureOrA}{Right FutureOr A}{S}{\code{Future<$T$>}}{%
2247522485
S}{\code{FutureOr<$T$>}}
22486+
\Rule{\SrnRightNullableOne}{Right Nullable 1}{S}{T}{S}{\code{$T$?}}
2247622487
\Rule{\SrnLeftPromotedVariable}{Left Promoted Variable B}{S}{T}{X \& S}{T}
2247722488
\RuleRaw{\SrnRightFunction}{Right Function}{T\mbox{ is a function type}}{%
2247822489
T}{\FUNCTION}
@@ -22508,6 +22519,7 @@ \subsection{Subtypes}
2250822519
\forall j \in 1 .. s\!:\;\SubtypeStd{S_j}{T_j}}{%
2250922520
\code{$C$<\List{S}{1}{s}>}}{\code{$C$<\List{T}{1}{s}>}}
2251022521
\ExtraVSP
22522+
%% !!! Should include mixins (and other non-class interface types, if any).
2251122523
\RuleRaw{\SrnSuperinterface}{Superinterface}{%
2251222524
\code{\CLASS{} $C$<\TypeParametersNoBounds{X}{s}>\,\ldots\,\{\}}\\
2251322525
\Superinterface{\code{$D$<\List{T}{1}{m}>}}{C} &
@@ -22559,10 +22571,9 @@ \subsubsection{Subtype Rules}
2255922571
Whenever a rule contains one or more meta-variables,
2256022572
that rule can be used by
2256122573
\IndexCustom{instantiating}{instantiation!subtype rule}
22562-
it, that is, by consistently replacing
22563-
each occurrence of a given meta-variable by
22564-
concrete syntax denoting the same type
22565-
(\ref{typeType}).
22574+
it, that is, by choosing a specific type $T$ and metavariable $\cal V$,
22575+
and then consistently replacing all occurrences of $\cal V$ by
22576+
concrete syntax denoting $T$.
2256622577

2256722578
\commentary{%
2256822579
In general, this means that two or more occurrences of
@@ -22575,11 +22586,12 @@ \subsubsection{Subtype Rules}
2257522586
can be used to conclude
2257622587
\Subtype{\emptyset}{\code{int}}{\code{int}},
2257722588
where $\emptyset$ denotes the empty environment
22578-
(any environment would suffice because no type variables occur).
22589+
(any environment would suffice because no type variables occur).%
22590+
}
2257922591

22580-
However, the wording `denoting the same type' above covers
22581-
additional situations as well:
22582-
For instance, we may use rule~\SrnReflexivity{}
22592+
\commentary{%
22593+
The phrases `same type' and `identical syntax' deserves some extra scrutiny:
22594+
We may, e.g., use rule~\SrnReflexivity{}
2258322595
to show that \code{p1.C} is a subtype of
2258422596
\code{p2.C} when \code{C} is a class declared in a
2258522597
library $L$ which is imported by libraries $L_1$ and $L_2$ and
@@ -22608,8 +22620,27 @@ \subsubsection{Subtype Rules}
2260822620
}
2260922621

2261022622
\LMHash{}%
22611-
Every \synt{typeName} used in a type mentioned in this section is assumed to
22612-
have no compile-time error and denote a type.
22623+
In this section,
22624+
the notion of two types $T_1$ and $T_2$ being the same type
22625+
is taken to mean that $T_1$ and $T_2$ have the same canonical syntax
22626+
(\ref{standardUpperBoundsAndStandardLowerBounds}).
22627+
22628+
\commentary{%
22629+
In other words, we eliminate the difficulties associated with
22630+
different syntax denoting the same type,
22631+
and different types denoted by the same syntax,
22632+
by assuming that every type in the program has been expressed
22633+
in a manner where those situations never occur,
22634+
because each type is denoted by the same globally unique syntax everywhere.
22635+
Note that `same canonical syntax' also requires
22636+
transitive expansion of all type aliases
22637+
(\ref{typedef}).%
22638+
}
22639+
22640+
\LMHash{}%
22641+
Every \synt{typeName} used in a type mentioned in this section
22642+
is assumed to have no compile-time error,
22643+
and it is assumed to denote a type.
2261322644

2261422645
\commentary{%
2261522646
That is, no subtyping relationship can be proven for
@@ -22657,9 +22688,11 @@ \subsubsection{Subtype Rules}
2265722688
So
2265822689
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double} \} \uplus
2265922690
\{ \code{Z} \mapsto \code{Object} \} =
22660-
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, \code{Z} \mapsto \code{Object} \}$
22691+
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{double}, %
22692+
\code{Z} \mapsto \code{Object} \}$
2266122693
and
22662-
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{FutureOr<List<double>{}>} \} \uplus
22694+
$\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto %
22695+
\code{FutureOr<List<double>{}>} \} \uplus
2266322696
\{ \code{Y} \mapsto \code{int} \} =
2266422697
\{ \code{X} \mapsto \code{int}, \code{Y} \mapsto \code{int} \}$.
2266522698
Note that operator $\uplus$ is concerned with scopes and shadowing,
@@ -22709,28 +22742,6 @@ \subsubsection{Being a subtype}
2270922742
each of the premises of $R$,
2271022743
continuing until a rule with no premises is reached.
2271122744

22712-
\LMHash{}%
22713-
The first premise in the
22714-
rules~\SrnLeftTypeAlias{} and~\SrnRightTypeAlias{}
22715-
is a type alias declaration.
22716-
This premise is satisfied in each of the following situations:
22717-
22718-
\begin{itemize}
22719-
\item A non-generic type alias named $F$ is declared.
22720-
In this case $s$ is zero,
22721-
no assumptions are made about the existence
22722-
of any formal type parameters,
22723-
and actual type argument lists are omitted everywhere in the rule.
22724-
\item We may choose $s$ and \List{X}{1}{s} such that the following holds:
22725-
A generic type alias named $F$ is declared,
22726-
with formal type parameters \List{X}{1}{s}.
22727-
\commentary{%
22728-
Each formal type parameter $X_j$ may have a bound,
22729-
but the bounds are never used in this context,
22730-
so we do not introduce metavariables for them.%
22731-
}
22732-
\end{itemize}
22733-
2273422745
\LMHash{}%
2273522746
Rule~\SrnRightFunction{} has as a premise that `$T$ is a function type'.
2273622747
This means that $T$ is a type of one of the forms introduced in
@@ -22839,7 +22850,7 @@ \subsubsection{Informal Subtype Rule Descriptions}
2283922850
the rule is also valid in any environment
2284022851
and the environment is never used explicitly,
2284122852
so we will not repeat that.
22842-
\Item{\SrnTop}{Top}
22853+
\Item{\SrnRightTop}{Top}
2284322854
Every type is a subtype of \code{Object},
2284422855
every type is a subtype of \DYNAMIC,
2284522856
and every type is a subtype of \VOID.
@@ -22851,19 +22862,11 @@ \subsubsection{Informal Subtype Rule Descriptions}
2285122862
(\ref{superBoundedTypes}).
2285222863
\Item{\SrnBottom}{Bottom}
2285322864
Every type is a supertype of $\bot$.
22854-
\Item{\SrnNull}{Null}
22855-
Every type other than $\bot$ is a supertype of \code{Null}.
22856-
\Item{\SrnLeftTypeAlias}{Type Alias Left}
22857-
An application of a type alias to some actual type arguments is
22858-
a subtype of another type $T$
22859-
if the expansion of the type alias to the type that it denotes
22860-
is a subtype of $T$.
22861-
Note that a non-generic type alias is handled by letting $s = 0$.
22862-
\Item{\SrnRightTypeAlias}{Type Alias Right}
22863-
A type $S$ is a subtype of an application of a type alias
22864-
if $S$ is a subtype of
22865-
the expansion of the type alias to the type that it denotes.
22866-
Note that a non-generic type alias is handled by letting $s = 0$.
22865+
\Item{\SrnNullOne}{Null 1}
22866+
\code{Null} is a subtype of every type of the form \code{$T$?}.
22867+
\Item{\SrnNullTwo}{Null 2}
22868+
\code{Null} is a subtype of \code{FutureOr<$T$>}
22869+
if \code{Null} is a subtype of $T$.
2286722870
\Item{\SrnLeftFutureOr}{Left FutureOr}
2286822871
The type \code{FutureOr<$S$>} is a subtype of a given type $T$
2286922872
if $S$ is a subtype of $T$ and \code{Future<$S$>} is a subtype of $T$,
@@ -23334,11 +23337,10 @@ \subsection{Type Normalization}
2333423337
(such as \code{Never} and $X$).
2333523338

2333623339
In particular, \SubtypeNE{S}{T} and \SubtypeNE{T}{S} holds if and only if
23337-
\NormalizedTypeOf{$T$} is syntactically equal to \NormalizedTypeOf{$S$},
23338-
modulo replacement of atomic top types,
23339-
and modulo replacement of terms derived from \synt{typeName}
23340-
denoting the same type
23341-
(such as \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
23340+
\NormalizedTypeOf{$T$} has the same canonical syntax as \NormalizedTypeOf{$S$}
23341+
(\ref{standardUpperBoundsAndStandardLowerBounds}),
23342+
modulo replacement of atomic top types
23343+
(e.g., \code{List<C<\DYNAMIC>{}>} and \code{List<myPrefix.C<\VOID>{}>}).%
2334223344
}
2334323345

2334423346
\LMHash{}%
@@ -23546,8 +23548,8 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2354623548
}
2354723549

2354823550
\LMHash{}%
23549-
Consequently, when we say that two types $T_1$ and $T_2$ are
23550-
\IndexCustom{syntactically equal}{type!syntactically equal},
23551+
Consequently, when we say that two types $T_1$ and $T_2$ have the
23552+
\IndexCustom{same canonical syntax}{type!same canonical syntax},
2355123553
it refers to the situation where both $T_1$ and $T_2$ have been
2355223554
transformed in the above sense
2355323555
(\commentary{by alpha-renaming, alias expansion, and canonical naming}).
@@ -23781,7 +23783,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2378123783
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
2378223784

2378323785
\noindent
23784-
such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types,
23786+
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax,
2378523787
and both have the same number of required positional parameters.
2378623788
Let $q$ be $\metavar{min}(k, l)$,
2378723789
let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
@@ -23811,7 +23813,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2381123813
and consider the case where the following is satisfied:
2381223814

2381323815
\begin{itemize}
23814-
\item Each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
23816+
\item Each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2381523817
\item For each required entry named $n$ in $\metavar{Named}_1$,
2381623818
$\metavar{Named}_2$ contains an entry named $n$
2381723819
(\commentary{which may or may not be required}).
@@ -24036,7 +24038,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2403624038
\EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\,$P_{2l}$)}
2403724039

2403824040
\noindent
24039-
such that each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
24041+
such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2404024042
Let $q$ be $\metavar{max}(k, l)$,
2404124043
let $T_3$ be \LowerBoundType{$T_1$}{$T_2$},
2404224044
let $B_{3i}$ be $B_{1i}$, and
@@ -24073,7 +24075,7 @@ \subsubsection{Standard Upper Bounds and Standard Lower Bounds}
2407324075
where $\metavar{Named}_j$ declares a non-empty set of named parameters
2407424076
with names $\metavar{NamesOfNamed}_j$, $j \in 1 .. 2$,
2407524077
and consider the case where
24076-
each $B_{1i}$ and $B_{2i}$ are syntactically equal types.
24078+
each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax.
2407724079
Then \DefEqualsNewline{\LowerBoundType{$U_1$}{$U_2$}}{%U_3}, where $U_3$ is
2407824080
\code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
2407924081
\EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\,$P_{3k}$,\,$\metavar{Named}_3$)}},
@@ -24617,9 +24619,10 @@ \subsection{Intersection Types}
2461724619

2461824620
\commentary{%
2461924621
An intersection type will never occur as a nested type, that is,
24620-
it will never occurs as
24622+
it never occurs as or in
2462124623
an actual type argument in a parameterized type,
24622-
as a parameter type or a return type in a function type,
24624+
a parameter type or a return type in a function type,
24625+
a type parameter bound,
2462324626
as the right operand of another intersection type,
2462424627
or as the operand of the nullable type operator \lit{?}.%
2462524628
}
@@ -24780,24 +24783,8 @@ \subsection{Type Type}
2478024783
and let $S_j$ be \NormalizedTypeOf{$U_j$}, for $j \in 1 .. 2$
2478124784
(\ref{typeNormalization}).
2478224785
We then say that $T_1$ and $T_2$ are the \Index{same type}
24783-
if{}f $S_1$ and $S_2$ are syntactically equal,
24784-
up to equivalence of bound variables,
24785-
and up to replacement of identifiers or qualified identifiers
24786-
resolving to the same type declaration
24787-
(\commentary{%
24788-
e.g., \code{C} and \code{prefix.C} could resolve to
24789-
the same class declaration%
24790-
}),
24791-
and excluding the case where two identifiers or qualified identifiers
24792-
occurring at corresponding positions in $S_1$ and $S_2$
24793-
are syntactically identical,
24794-
but resolve to different declarations
24795-
(\commentary{%
24796-
e.g., one occurrence of \code{C} could resolve to a
24797-
class declaration imported from a library $L_1$,
24798-
and another occurrence of \code{C} could resolve to a
24799-
class declaration imported from a different library $L_2$%
24800-
}).
24786+
if{}f $S_1$ and $S_2$ are have the same canonical syntax
24787+
(\ref{standardUpperBoundsAndStandardLowerBounds}).
2480124788

2480224789
\LMHash{}%
2480324790
A reified type identifies the underlying type in the sense that
@@ -26207,7 +26194,7 @@ \section*{Appendix: Algorithmic Subtyping}
2620726194
\end{minipage}
2620826195
%
2620926196
\caption{Algorithmic subtype rules.
26210-
Rules \SrnTop--\SrnSuperinterface{} are unchanged and hence omitted here.}
26197+
Rules \SrnRightTop--\SrnSuperinterface{} are unchanged and hence omitted here.}
2621126198
\label{fig:algorithmicSubtypeRules}
2621226199
\end{figure}
2621326200

@@ -26268,7 +26255,7 @@ \section*{Appendix: Algorithmic Subtyping}
2626826255
followed by the rule whose number is $N+1$.
2626926256
\commentary{%
2627026257
So the order is
26271-
\AppSrnReflexivity, \SrnTop--\SrnTypeVariableReflexivityA,
26258+
\AppSrnReflexivity, \SrnRightTop--\SrnTypeVariableReflexivityA,
2627226259
\AppSrnTypeVariableReflexivityB, \AppSrnTypeVariableReflexivityC,
2627326260
\AppSrnTypeVariableReflexivityD,
2627426261
\SrnRightPromotedVariable, and so on.%

0 commit comments

Comments
 (0)