Skip to content

Commit e8b0073

Browse files
committed
Update command \flatten to \Flatten
1 parent ae18bb3 commit e8b0073

File tree

1 file changed

+41
-41
lines changed

1 file changed

+41
-41
lines changed

specification/dartLangSpec.tex

Lines changed: 41 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -2083,7 +2083,7 @@ \section{Functions}
20832083
that the returned object will not be used
20842084
(\ref{return}).%
20852085
}
2086-
\item The function is asynchronous, \flatten{T} is not \VOID,
2086+
\item The function is asynchronous, \Flatten{T} is not \VOID,
20872087
and it would have been a compile-time error
20882088
to declare the function with the body
20892089
\code{\ASYNC{} \{ \RETURN{} $e$; \}}
@@ -11868,7 +11868,7 @@ \subsection{Function Expressions}
1186811868
\commentary{%
1186911869
There is no rule for the case where $T$ is of the form \code{$X$\,\&\,$S$}
1187011870
because this will never occur
11871-
(this concept is only used in \flattenName, which is defined below).%
11871+
(this concept is only used in \FlattenName, which is defined below).%
1187211872
}
1187311873
\end{itemize}
1187411874

@@ -11925,7 +11925,7 @@ \subsection{Function Expressions}
1192511925

1192611926
\LMHash{}%
1192711927
We define the auxiliary function
11928-
\IndexCustom{\flatten{T}}{flatten(t)@\emph{flatten}$(T)$}
11928+
\IndexCustom{\Flatten{T}}{flatten(t)@\emph{flatten}$(T)$}
1192911929
as follows, using the first applicable case:
1193011930

1193111931
\begin{itemize}
@@ -11935,24 +11935,24 @@ \subsection{Function Expressions}
1193511935

1193611936
\begin{itemize}
1193711937
\item if $S$ derives a future type $U$
11938-
then \DefEquals{\flatten{T}}{\code{\flatten{U}}}.
11938+
then \DefEquals{\Flatten{T}}{\code{\Flatten{U}}}.
1193911939
\item otherwise,
11940-
\DefEquals{\flatten{T}}{\code{\flatten{X}}}.
11940+
\DefEquals{\Flatten{T}}{\code{\Flatten{X}}}.
1194111941
\end{itemize}
1194211942

1194311943
\item If $T$ derives a future type \code{Future<$S$>}
1194411944
or \code{FutureOr<$S$>}
11945-
then \DefEquals{\flatten{T}}{S}.
11945+
then \DefEquals{\Flatten{T}}{S}.
1194611946

1194711947
\item If $T$ derives a future type \code{Future<$S$>?}\ or
11948-
\code{FutureOr<$S$>?}\ then \DefEquals{\flatten{T}}{\code{$S$?}}.
11948+
\code{FutureOr<$S$>?}\ then \DefEquals{\Flatten{T}}{\code{$S$?}}.
1194911949

11950-
\item Otherwise, \DefEquals{\flatten{T}}{T}.
11950+
\item Otherwise, \DefEquals{\Flatten{T}}{T}.
1195111951
\end{itemize}
1195211952

1195311953
\rationale{%
1195411954
This definition guarantees that for any type $T$,
11955-
\code{$T <:$ FutureOr<$\flatten{T}$>}. The proof is by induction on the
11955+
\code{$T <:$ FutureOr<$\Flatten{T}$>}. The proof is by induction on the
1195611956
structure of $T$:
1195711957

1195811958
\begin{itemize}
@@ -11961,35 +11961,35 @@ \subsection{Function Expressions}
1196111961
\begin{itemize}
1196211962
\item if $S$ derives a future type $U$,
1196311963
then \code{$T <: S$} and \code{$S <: U$}, so \code{$T <: U$}.
11964-
By the induction hypothesis, \code{$U <:$ FutureOr<$\flatten{U}$>}.
11965-
Since \code{$\flatten{T} = \flatten{U}$} in this case, it follows that
11966-
\code{$U <:$ FutureOr<$\flatten{T}$>}, and so
11967-
\code{$T <:$ FutureOr<$\flatten{T}$>}.
11964+
By the induction hypothesis, \code{$U <:$ FutureOr<$\Flatten{U}$>}.
11965+
Since \code{$\Flatten{T} = \Flatten{U}$} in this case, it follows that
11966+
\code{$U <:$ FutureOr<$\Flatten{T}$>}, and so
11967+
\code{$T <:$ FutureOr<$\Flatten{T}$>}.
1196811968
\item otherwise, \code{$T <: X$}.
11969-
By the induction hypothesis, \code{$X <:$ FutureOr<$\flatten{X}$>}.
11970-
Since \code{$\flatten{T} = \flatten{X}$} in this case, it follows that
11971-
\code{$U <:$ FutureOr<$\flatten{T}$>}, and so
11972-
\code{$T <:$ FutureOr<$\flatten{T}$>}.
11969+
By the induction hypothesis, \code{$X <:$ FutureOr<$\Flatten{X}$>}.
11970+
Since \code{$\Flatten{T} = \Flatten{X}$} in this case, it follows that
11971+
\code{$U <:$ FutureOr<$\Flatten{T}$>}, and so
11972+
\code{$T <:$ FutureOr<$\Flatten{T}$>}.
1197311973
\end{itemize}
1197411974

1197511975
\item If $T$ derives a future type \code{Future<$S$>}
1197611976
or \code{FutureOr<$S$>}, then, since \code{Future<$S$> $<:$ FutureOr<$S$>},
11977-
it follows that \code{$T <:$ FutureOr<$S$>}. Since \code{$\flatten{T} = S$}
11978-
in this case, it follows that \code{$T <:$ FutureOr<$\flatten{T}$>}.
11977+
it follows that \code{$T <:$ FutureOr<$S$>}. Since \code{$\Flatten{T} = S$}
11978+
in this case, it follows that \code{$T <:$ FutureOr<$\Flatten{T}$>}.
1197911979

1198011980
\item If $T$ derives a future type \code{Future<$S$>?} or
1198111981
\code{FutureOr<$S$>?}, then, since \code{Future<$S$>? $<:$ FutureOr<$S$>?},
1198211982
it follows that \code{$T <:$ FutureOr<$S$>?}.
1198311983
\code{FutureOr<$S$>? $<:$ FutureOr<$S$?>} for any type $S$
1198411984
(this can be shown using the union type subtype rules and from
1198511985
\code{Future<$S$> $<:$ Future<$S$?>} by covariance), so by transivitity,
11986-
\code{$T <:$ FutureOr<$S$?>}. Since \code{$\flatten{T} = S$?} in this case,
11987-
it follows that \code{$T <:$ FutureOr<$\flatten{T}$>}.
11986+
\code{$T <:$ FutureOr<$S$?>}. Since \code{$\Flatten{T} = S$?} in this case,
11987+
it follows that \code{$T <:$ FutureOr<$\Flatten{T}$>}.
1198811988

11989-
\item Otherwise, \code{$\flatten{T} = T$}, so
11990-
\code{FutureOr<$\flatten{T}$> $=$ FutureOr<$T$>}. Since
11989+
\item Otherwise, \code{$\Flatten{T} = T$}, so
11990+
\code{FutureOr<$\Flatten{T}$> $=$ FutureOr<$T$>}. Since
1199111991
\code{$T <:$ FutureOr<$T$>}, it follows that
11992-
\code{$T <:$ FutureOr<$\flatten{T}$>}.
11992+
\code{$T <:$ FutureOr<$\Flatten{T}$>}.
1199311993
\end{itemize}
1199411994
}
1199511995

@@ -12024,7 +12024,7 @@ \subsection{Function Expressions}
1202412024

1202512025
\noindent
1202612026
is
12027-
\FunctionTypePositionalStdCr{\code{Future<\flatten{T_0}>}},
12027+
\FunctionTypePositionalStdCr{\code{Future<\Flatten{T_0}>}},
1202812028

1202912029
\noindent
1203012030
where $T_0$ is the static type of $e$.
@@ -12060,7 +12060,7 @@ \subsection{Function Expressions}
1206012060

1206112061
\noindent
1206212062
is
12063-
\FunctionTypeNamedStdCr{\code{Future<\flatten{T_0}>}},
12063+
\FunctionTypeNamedStdCr{\code{Future<\Flatten{T_0}>}},
1206412064

1206512065
\noindent
1206612066
where $T_0$ is the static type of $e$.
@@ -16876,13 +16876,13 @@ \subsection{Await Expressions}
1687616876
\BlindDefineSymbol{a, e, S}%
1687716877
Let $a$ be an expression of the form \code{\AWAIT\,\,$e$}.
1687816878
Let $S$ be the static type of $e$.
16879-
The static type of $a$ is then \flatten{S}
16879+
The static type of $a$ is then \Flatten{S}
1688016880
(\ref{functionExpressions}).
1688116881

1688216882
\LMHash{}%
1688316883
Evaluation of $a$ proceeds as follows:
1688416884
First, the expression $e$ is evaluated to an object $o$.
16885-
Let \DefineSymbol{T} be \flatten{S}.
16885+
Let \DefineSymbol{T} be \Flatten{S}.
1688616886
If the run-time type of $o$ is a subtype of \code{Future<$T$>},
1688716887
then let \DefineSymbol{f} be $o$;
1688816888
otherwise let $f$ be the result of creating
@@ -16903,7 +16903,7 @@ \subsection{Await Expressions}
1690316903
If $f$ completes with an object $v$, $a$ evaluates to $v$.
1690416904

1690516905
\rationale{%
16906-
The use of \flattenName{} to find $T$
16906+
The use of \FlattenName{} to find $T$
1690716907
and hence determine the dynamic type test
1690816908
implies that we await a future in every case where this choice is sound.%
1690916909
}
@@ -16920,7 +16920,7 @@ \subsection{Await Expressions}
1692016920
However, the second kind could be a \code{Future<Object?>}.
1692116921
This object isn't a \code{Future<Object>}, and it isn't \NULL,
1692216922
so it \emph{must} be considered to be in the second group.
16923-
Nevertheless, \flatten{\code{FutureOr<Object>?}} is \code{Object?},
16923+
Nevertheless, \Flatten{\code{FutureOr<Object>?}} is \code{Object?},
1692416924
so we \emph{will} await a \code{Future<Object?>}.
1692516925
We have chosen this semantics because it was the smallest breaking change
1692616926
relative to the semantics in earlier versions of Dart,
@@ -19368,7 +19368,7 @@ \subsection{Return}
1936819368
%
1936919369
% Returning without an object is only ok for async-"voidy" return types.
1937019370
It is a compile-time error if $s$ is \code{\RETURN;},
19371-
unless \flatten{T}
19371+
unless \Flatten{T}
1937219372
(\ref{functionExpressions})
1937319373
is \VOID, \DYNAMIC, or \code{Null}.
1937419374
%
@@ -19381,26 +19381,26 @@ \subsection{Return}
1938119381
% Returning with an object in an void async function only ok
1938219382
% when that value is async-"voidy".
1938319383
It is a compile-time error if $s$ is \code{\RETURN{} $e$;},
19384-
\flatten{T} is \VOID,
19385-
and \flatten{S} is neither \VOID, \DYNAMIC, nor \code{Null}.
19384+
\Flatten{T} is \VOID,
19385+
and \Flatten{S} is neither \VOID, \DYNAMIC, nor \code{Null}.
1938619386
%
1938719387
% Returning async-void in a "non-async-voidy" function is an error.
1938819388
It is a compile-time error if $s$ is \code{\RETURN{} $e$;},
19389-
\flatten{T} is neither \VOID, \DYNAMIC, nor \code{Null},
19390-
and \flatten{S} is \VOID.
19389+
\Flatten{T} is neither \VOID, \DYNAMIC, nor \code{Null},
19390+
and \Flatten{S} is \VOID.
1939119391
%
1939219392
% Otherwise, returning an un-deasync-assignable value is an error.
1939319393
It is a compile-time error if $s$ is \code{\RETURN{} $e$;},
19394-
\flatten{S} is not \VOID,
19395-
and \code{Future<\flatten{S}>} is not assignable to $T$.
19394+
\Flatten{S} is not \VOID,
19395+
and \code{Future<\Flatten{S}>} is not assignable to $T$.
1939619396

1939719397
\commentary{%
19398-
Note that \flatten{T} cannot be \VOID, \DYNAMIC, or \code{Null}
19398+
Note that \Flatten{T} cannot be \VOID, \DYNAMIC, or \code{Null}
1939919399
in the last case,
1940019400
because then \code{Future<$U$>} is assignable to $T$ for \emph{all} $U$.
1940119401
In particular, when $T$ is \code{FutureOr<Null>}
1940219402
(which is equivalent to \code{Future<Null>}),
19403-
\code{Future<\flatten{S}>} is assignable to $T$ for all $S$.
19403+
\code{Future<\Flatten{S}>} is assignable to $T$ for all $S$.
1940419404
This means that no compile-time error is raised,
1940519405
but \emph{only} the null object (\ref{null})
1940619406
or an instance of \code{Future<Null>}
@@ -19412,7 +19412,7 @@ \subsection{Return}
1941219412

1941319413
An error will not be raised if $f$ has no declared return type,
1941419414
since the return type would be \DYNAMIC,
19415-
and \code{Future<\flatten{S}>} is assignable to \DYNAMIC{} for all $S$.
19415+
and \code{Future<\Flatten{S}>} is assignable to \DYNAMIC{} for all $S$.
1941619416
However, an asynchronous non-generator function
1941719417
that declares a return type which is not ``voidy''
1941819418
must return an expression explicitly.%
@@ -19463,7 +19463,7 @@ \subsection{Return}
1946319463
let $T$ be the actual return type of $f$
1946419464
(\ref{actualTypes}).
1946519465
If the body of $f$ is marked \ASYNC{} (\ref{functions})
19466-
and $S$ is a subtype of \code{Future<\flatten{T}>}
19466+
and $S$ is a subtype of \code{Future<\Flatten{T}>}
1946719467
then let $r$ be the result of evaluating \code{await $v$}
1946819468
where $v$ is a fresh variable bound to $o$.
1946919469
Otherwise let $r$ be $o$.

0 commit comments

Comments
 (0)