Skip to content

Commit 027c978

Browse files
authored
Fix typos (#805)
1 parent 95dd5b9 commit 027c978

File tree

25 files changed

+48
-48
lines changed

25 files changed

+48
-48
lines changed

dask_ml/_utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ def __enter__(self):
8080
self.old_level = self.logger.level
8181
self.logger.setLevel(self.level)
8282

83-
# The reasonsing behind the last part of the below if statement:
83+
# The reasoning behind the last part of the below if statement:
8484
# What if this context is called multiple times with the same logger?
8585
# Then, only add loggers if they have different output streams
8686
if self.handler and not any(

dask_ml/cluster/k_means.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ class KMeans(TransformerMixin, BaseEstimator):
8686
A dask array with the index position in ``cluster_centers_`` this
8787
sample belongs to.
8888
89-
intertia_ : float
89+
inertia_ : float
9090
Sum of distances of samples to their closest cluster center.
9191
9292
n_iter_ : int

dask_ml/compose/_column_transformer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,7 @@ class ColumnTransformer(sklearn.compose.ColumnTransformer):
114114
objects.
115115
116116
sparse_output_ : boolean
117-
Boolean flag indicating wether the output of ``transform`` is a
117+
Boolean flag indicating whether the output of ``transform`` is a
118118
sparse matrix or a dense numpy array, which depends on the output
119119
of the individual transformers and the `sparse_threshold` keyword.
120120

dask_ml/datasets.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -408,9 +408,9 @@ def make_classification_df(
408408
response_rate : float between 0.0 and 0.5, default is 0.5
409409
percentage of sample to be response records max is 0.5
410410
predictability : float between 0.0 and 1.0, default is 0.1
411-
how hard is the response to predict (1.0 being easist)
411+
how hard is the response to predict (1.0 being easiest)
412412
random_state : int, default is None
413-
seed for reproducability purposes
413+
seed for reproducibility purposes
414414
chunks : int
415415
How to chunk the array. Must be one of the following forms:
416416
- A blocksize like 1000.

dask_ml/decomposition/truncated_svd.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ def __init__(
9696
9797
.. warning::
9898
99-
The implementation currently does not support sparse matricies.
99+
The implementation currently does not support sparse matrices.
100100
101101
Examples
102102
--------
@@ -115,7 +115,7 @@ def __init__(
115115
>>> print(svd.singular_values_) # doctest: +ELLIPSIS
116116
array([35.92469517, 35.32922121, 34.53368856, 34.138..., 34.013...])
117117
118-
Note that ``tranform`` returns a ``dask.Array``.
118+
Note that ``transform`` returns a ``dask.Array``.
119119
120120
>>> svd.transform(X)
121121
dask.array<sum-agg, shape=(1000, 5), dtype=float64, chunksize=(100, 5)>
@@ -174,7 +174,7 @@ def fit_transform(self, X, y=None):
174174
X = self._check_array(X)
175175
if self.algorithm not in {"tsqr", "randomized"}:
176176
raise ValueError(
177-
"`algorithm` must be 'tsqr' or 'randomzied', not '{}'".format(
177+
"`algorithm` must be 'tsqr' or 'randomized', not '{}'".format(
178178
self.algorithm
179179
)
180180
)

dask_ml/ensemble/_blockwise.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,7 @@ def _collect_probas(self, X):
177177
if isinstance(X, da.Array):
178178
chunks = (len(self.estimators_), X.chunks[0], len(self.classes_))
179179
meta = np.array([], dtype="float64")
180-
# (n_estimators, len(X), n_classses)
180+
# (n_estimators, len(X), n_classes)
181181
combined = X.map_blocks(
182182
_predict_proba_stack,
183183
estimators=self.estimators_,

dask_ml/feature_extraction/text.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -96,9 +96,9 @@ def transform(self, raw_X):
9696
9797
Notes
9898
-----
99-
The returned dask Array is composed scipy sparse matricies. If you need
99+
The returned dask Array is composed scipy sparse matrices. If you need
100100
to compute on the result immediately, you may need to convert the individual
101-
blocks to ndarrays or pydata/sparse matricies.
101+
blocks to ndarrays or pydata/sparse matrices.
102102
103103
>>> import sparse
104104
>>> X.map_blocks(sparse.COO.from_scipy_sparse, dtype=X.dtype) # doctest: +SKIP
@@ -130,7 +130,7 @@ class CountVectorizer(sklearn.feature_extraction.text.CountVectorizer):
130130
Additionally, this implementation benefits from having
131131
an active ``dask.distributed.Client``, even on a single machine.
132132
When a client is present, the learned ``vocabulary`` is persisted
133-
in distributed memory, which saves some recompuation and redundant
133+
in distributed memory, which saves some recomputation and redundant
134134
communication.
135135
136136
See Also

dask_ml/linear_model/glm.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -178,7 +178,7 @@ def fit(self, X, y=None):
178178
179179
Returns
180180
-------
181-
self : objectj
181+
self : object
182182
"""
183183
X = self._check_array(X)
184184

dask_ml/model_selection/_hyperband.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -256,7 +256,7 @@ class HyperbandSearchCV(BaseIncrementalSearchCV):
256256
the Hyperband model selection algorithm.
257257
258258
best_score_ : float
259-
Score achieved by ``best_estimator_`` on the vaidation set after the
259+
Score achieved by ``best_estimator_`` on the validation set after the
260260
final call to ``partial_fit``.
261261
262262
best_index_ : int

dask_ml/model_selection/_incremental.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -892,7 +892,7 @@ class IncrementalSearchCV(BaseIncrementalSearchCV):
892892
retained by the "inverse decay" algorithm.
893893
894894
best_score_ : float
895-
Score achieved by ``best_estimator_`` on the vaidation set after the
895+
Score achieved by ``best_estimator_`` on the validation set after the
896896
final call to ``partial_fit``.
897897
898898
best_index_ : int
@@ -956,7 +956,7 @@ class IncrementalSearchCV(BaseIncrementalSearchCV):
956956
957957
For example, setting ``tol=0`` and ``patience=2`` means training will stop
958958
after two consecutive calls to ``model.partial_fit`` without improvement,
959-
or when ``max_iter`` total calls to ``model.parital_fit`` are reached.
959+
or when ``max_iter`` total calls to ``model.partial_fit`` are reached.
960960
961961
"""
962962

@@ -1205,7 +1205,7 @@ class InverseDecaySearchCV(IncrementalSearchCV):
12051205
Higher `decay_rate` will result in lower training times, at the cost
12061206
of worse models.
12071207
1208-
The default ``decay_rate=1.0`` is chosen because it has some theoritical
1208+
The default ``decay_rate=1.0`` is chosen because it has some theoretical
12091209
motivation [1]_.
12101210
12111211
Attributes
@@ -1255,7 +1255,7 @@ class InverseDecaySearchCV(IncrementalSearchCV):
12551255
retained by the "inverse decay" algorithm.
12561256
12571257
best_score_ : float
1258-
Score achieved by ``best_estimator_`` on the vaidation set after the
1258+
Score achieved by ``best_estimator_`` on the validation set after the
12591259
final call to ``partial_fit``.
12601260
12611261
best_index_ : int
@@ -1278,7 +1278,7 @@ class InverseDecaySearchCV(IncrementalSearchCV):
12781278
Notes
12791279
-----
12801280
When ``decay_rate==1``, this class approximates the
1281-
number of ``partial_fit`` calls that :class:`SuccesiveHalvingSearchCV`
1281+
number of ``partial_fit`` calls that :class:`SuccessiveHalvingSearchCV`
12821282
performs. If ``n_initial_parameters`` is configured properly with
12831283
``decay_rate=1``, it's possible this class will mirror the most aggressive
12841284
bracket of :class:`HyperbandSearchCV`. This might yield good results

0 commit comments

Comments
 (0)