Skip to content

Commit aeb538a

Browse files
committed
fixup
1 parent d4f4d10 commit aeb538a

File tree

1 file changed

+0
-98
lines changed

1 file changed

+0
-98
lines changed

06_distributed_advanced.ipynb

Lines changed: 0 additions & 98 deletions
Original file line numberDiff line numberDiff line change
@@ -491,104 +491,6 @@
491491
"point"
492492
]
493493
},
494-
{
495-
"cell_type": "code",
496-
"execution_count": null,
497-
"metadata": {},
498-
"outputs": [],
499-
"source": [
500-
"from dask.distributed import as_completed\n",
501-
"from random import uniform\n",
502-
"\n",
503-
"scale = 5 # Intial random perturbation scale\n",
504-
"best_point = (0, 0) # Initial guess\n",
505-
"best_score = float('inf') # Best score so far\n",
506-
"startx = [uniform(-scale, scale) for _ in range(10)]\n",
507-
"starty = [uniform(-scale, scale) for _ in range(10)]\n",
508-
"\n",
509-
"# set up plot\n",
510-
"source = ColumnDataSource({'x': startx, 'y': starty, 'c': ['grey'] * 10})\n",
511-
"p.circle(source=source, x='x', y='y', color='c')\n",
512-
"t = show(p, notebook_handle=True)\n",
513-
"\n",
514-
"# initial 10 random points\n",
515-
"futures = [c.submit(rosenbrock, (x, y)) for x, y in zip(startx, starty)]\n",
516-
"iterator = as_completed(futures)\n",
517-
"\n",
518-
"for res in iterator:\n",
519-
" # take a completed point, is it an improvement?\n",
520-
" point, score = res.result()\n",
521-
" if score < best_score:\n",
522-
" best_score, best_point = score, point\n",
523-
" print(score, point)\n",
524-
"\n",
525-
" x, y = best_point\n",
526-
" newx, newy = (x + uniform(-scale, scale), y + uniform(-scale, scale))\n",
527-
" \n",
528-
" # update plot\n",
529-
" source.stream({'x': [newx], 'y': [newy], 'c': ['grey']}, rollover=20)\n",
530-
" push_notebook(t)\n",
531-
" \n",
532-
" # add new point, dynamically, to work on the cluster\n",
533-
" new_point = c.submit(rosenbrock, (newx, newy))\n",
534-
" iterator.add(new_point) # Start tracking new task as well\n",
535-
"\n",
536-
" # Narrow search and consider stopping\n",
537-
" scale *= 0.99\n",
538-
" if scale < 0.001:\n",
539-
" break\n",
540-
"point"
541-
]
542-
},
543-
{
544-
"cell_type": "code",
545-
"execution_count": null,
546-
"metadata": {},
547-
"outputs": [],
548-
"source": [
549-
"from dask.distributed import as_completed\n",
550-
"from random import uniform\n",
551-
"\n",
552-
"scale = 5 # Intial random perturbation scale\n",
553-
"best_point = (0, 0) # Initial guess\n",
554-
"best_score = float('inf') # Best score so far\n",
555-
"startx = [uniform(-scale, scale) for _ in range(10)]\n",
556-
"starty = [uniform(-scale, scale) for _ in range(10)]\n",
557-
"\n",
558-
"# set up plot\n",
559-
"source = ColumnDataSource({'x': startx, 'y': starty, 'c': ['grey'] * 10})\n",
560-
"p.circle(source=source, x='x', y='y', color='c')\n",
561-
"t = show(p, notebook_handle=True)\n",
562-
"\n",
563-
"# initial 10 random points\n",
564-
"futures = [c.submit(rosenbrock, (x, y)) for x, y in zip(startx, starty)]\n",
565-
"iterator = as_completed(futures)\n",
566-
"\n",
567-
"for res in iterator:\n",
568-
" # take a completed point, is it an improvement?\n",
569-
" point, score = res.result()\n",
570-
" if score < best_score:\n",
571-
" best_score, best_point = score, point\n",
572-
" print(score, point)\n",
573-
"\n",
574-
" x, y = best_point\n",
575-
" newx, newy = (x + uniform(-scale, scale), y + uniform(-scale, scale))\n",
576-
" \n",
577-
" # update plot\n",
578-
" source.stream({'x': [newx], 'y': [newy], 'c': ['grey']}, rollover=20)\n",
579-
" push_notebook(t)\n",
580-
" \n",
581-
" # add new point, dynamically, to work on the cluster\n",
582-
" new_point = c.submit(rosenbrock, (newx, newy))\n",
583-
" iterator.add(new_point) # Start tracking new task as well\n",
584-
"\n",
585-
" # Narrow search and consider stopping\n",
586-
" scale *= 0.99\n",
587-
" if scale < 0.001:\n",
588-
" break\n",
589-
"point"
590-
]
591-
},
592494
{
593495
"cell_type": "markdown",
594496
"metadata": {},

0 commit comments

Comments
 (0)