|
1 | 1 | #' Detect the range for numerical variables |
2 | 2 | #' |
3 | 3 | #' Detect for each numerical variable in a validation rule set, what its maximum and minimum values are. |
4 | | -#' This allows for manual rule set checking: does rule set \code{x} overly constrain numerical values? |
| 4 | +#' This allows for manual rule set checking: does rule set `x` overly constrain numerical values? |
5 | 5 | #' |
6 | 6 | #' This procedure only finds minimum and maximum values, but misses gaps. |
7 | 7 | #' |
8 | | -#' @seealso \code{\link{detect_fixed_variables}} |
| 8 | +#' @seealso [detect_fixed_variables()] |
9 | 9 | #' @references Statistical Data Cleaning with R (2017), Chapter 8, M. van der Loo, E. de Jonge |
10 | 10 | #' @references Simplifying constraints in data editing (2015). Technical Report 2015|18, Statistics Netherlands, J. Daalmans |
11 | 11 | #' @example ./examples/detect_boundary.R |
12 | 12 | #' @export |
13 | | -#' @param x \code{\link{validator}} object, rule set to be checked |
| 13 | +#' @param x [validate::validator()] object, rule set to be checked |
14 | 14 | #' @param eps detected fixed values will have this precision. |
15 | 15 | #' @param ... currently not used |
16 | 16 | #' @family feasibility |
17 | | -#' @return \code{\link{data.frame}} with columns "variable", "lowerbound", "upperbound". |
| 17 | +#' @return [data.frame()] with columns "variable", "lowerbound", "upperbound". |
18 | 18 | detect_boundary_num <- function(x, eps = 1e-8, ...){ |
19 | 19 | x <- check_validator(x) |
20 | 20 | prec <- -log(eps, 10) |
@@ -62,11 +62,11 @@ detect_boundary_num <- function(x, eps = 1e-8, ...){ |
62 | 62 | #' |
63 | 63 | #' Detect viable domains for categorical variables |
64 | 64 | #' @example ./examples/detect_boundary.R |
65 | | -#' @param x \code{\link{validator}} object with rules |
| 65 | +#' @param x [validate::validator()] object with rules |
66 | 66 | #' @param as_df return result as data.frame (before 0.4.5) |
67 | 67 | #' @param ... not used |
68 | 68 | #' @family feasibility |
69 | | -#' @return \code{data.frame} with columns \code{$variable}, \code{$value}, \code{$min}, \code{$max}. Each row is a |
| 69 | +#' @return `data.frame` with columns `$variable`, `$value`, `$min`, `$max`. Each row is a |
70 | 70 | #' category/value of a categorical variable. |
71 | 71 | #' @export |
72 | 72 | detect_boundary_cat <- function(x, ..., as_df = FALSE){ |
|
0 commit comments