|
| 1 | +import pandas as pd |
| 2 | +import streamlit as st |
| 3 | +import datetime |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +from databricks.sdk import WorkspaceClient |
| 6 | + |
| 7 | + |
| 8 | +workspace = WorkspaceClient() |
| 9 | + |
| 10 | +def get_catalogs(): |
| 11 | + catalogs = workspace.catalogs.list() |
| 12 | + # Parse metadata into a list of dictionaries |
| 13 | + catalogs_data = [] |
| 14 | + for catalog in catalogs: |
| 15 | + catalogs_data.append({ |
| 16 | + "Catalog Name": catalog.name, |
| 17 | + "Owner": catalog.owner, |
| 18 | + "Comment": catalog.comment, |
| 19 | + "Created At": datetime.datetime.fromtimestamp(catalog.created_at/1000), |
| 20 | + "Updated At": datetime.datetime.fromtimestamp(catalog.updated_at/1000), |
| 21 | + }) |
| 22 | + return pd.DataFrame(catalogs_data) |
| 23 | + |
| 24 | +def get_schemas(): |
| 25 | + schema_data = [] |
| 26 | + for catalog in workspace.catalogs.list(): |
| 27 | + schemas = workspace.schemas.list(catalog_name=catalog.name) |
| 28 | + for schema in schemas: |
| 29 | + print(schema.catalog_name) |
| 30 | + print(schema) |
| 31 | + schema_data.append({ |
| 32 | + "Catalog Name": schema.catalog_name, |
| 33 | + "Catalog Type": schema.catalog_type, |
| 34 | + "Schema Name": schema.full_name, |
| 35 | + "Owner": schema.owner, |
| 36 | + "Comment": schema.comment, |
| 37 | + "Created At": datetime.datetime.fromtimestamp(schema.created_at/1000), |
| 38 | + "Updated At": datetime.datetime.fromtimestamp(schema.updated_at/1000), |
| 39 | + "Effective Predictive Optimization": schema.effective_predictive_optimization_flag, |
| 40 | + "Properites": schema.properties |
| 41 | + |
| 42 | + }) |
| 43 | + return pd.DataFrame(schema_data) |
| 44 | + |
| 45 | + |
| 46 | + |
| 47 | +st.header(body="Unity Catalog", divider=True) |
| 48 | +st.subheader("Get catalog and schema information") |
| 49 | +st.write( |
| 50 | + "This receipt gets the meta data for the catalogs and the schemas." |
| 51 | +) |
| 52 | + |
| 53 | +tab_a, tab_b = st.tabs(["**Try it**", "**Code snippets**"]) |
| 54 | + |
| 55 | +with tab_a: |
| 56 | + if st.button("Try It"): |
| 57 | + st.write('### Databricks Catalogs') |
| 58 | + st.dataframe(get_catalogs()) |
| 59 | + |
| 60 | + st.write('### Databricks Schema') |
| 61 | + |
| 62 | + schemas = get_schemas() |
| 63 | + st.dataframe(schemas) |
| 64 | + |
| 65 | + |
| 66 | +table = [ |
| 67 | + { |
| 68 | + "type": "Get Catalog", |
| 69 | + "param": "get_catalog", |
| 70 | + "description": "Get the catalogs.", |
| 71 | + "code": """ |
| 72 | + ```python |
| 73 | + from databricks.sdk import WorkspaceClient |
| 74 | +
|
| 75 | +
|
| 76 | + workspace = WorkspaceClient() |
| 77 | +
|
| 78 | + def get_catalogs(): |
| 79 | + catalogs = workspace.catalogs.list() |
| 80 | + # Parse metadata into a list of dictionaries |
| 81 | + catalogs_data = [] |
| 82 | + for catalog in catalogs: |
| 83 | + catalogs_data.append({ |
| 84 | + "Catalog Name": catalog.name, |
| 85 | + "Owner": catalog.owner, |
| 86 | + "Comment": catalog.comment, |
| 87 | + "Created At": datetime.datetime.fromtimestamp(catalog.created_at/1000), |
| 88 | + "Updated At": datetime.datetime.fromtimestamp(catalog.updated_at/1000), |
| 89 | + }) |
| 90 | + return pd.DataFrame(catalogs_data) |
| 91 | + st.write('### Databricks Catalogs') |
| 92 | + st.dataframe(get_catalogs()) |
| 93 | + ``` |
| 94 | + """, |
| 95 | + }, |
| 96 | + { |
| 97 | + "type": "Get Schemas", |
| 98 | + "param": "get_schemas", |
| 99 | + "description": "Get the schemas", |
| 100 | + "code": """ |
| 101 | + ```python |
| 102 | + from databricks.sdk import WorkspaceClient |
| 103 | + |
| 104 | + workspace = WorkspaceClient() |
| 105 | + |
| 106 | + def get_schemas(): |
| 107 | + schema_data = [] |
| 108 | + for catalog in workspace.catalogs.list(): |
| 109 | + schemas = workspace.schemas.list(catalog_name=catalog.name) |
| 110 | + for schema in schemas: |
| 111 | + print(schema.catalog_name) |
| 112 | + print(schema) |
| 113 | + schema_data.append({ |
| 114 | + "Catalog Name": schema.catalog_name, |
| 115 | + "Catalog Type": schema.catalog_type, |
| 116 | + "Schema Name": schema.full_name, |
| 117 | + "Owner": schema.owner, |
| 118 | + "Comment": schema.comment, |
| 119 | + "Created At": datetime.datetime.fromtimestamp(schema.created_at/1000), |
| 120 | + "Updated At": datetime.datetime.fromtimestamp(schema.updated_at/1000), |
| 121 | + "Effective Predictive Optimization": schema.effective_predictive_optimization_flag, |
| 122 | + "Properites": schema.properties |
| 123 | +
|
| 124 | + }) |
| 125 | + return pd.DataFrame(schema_data) |
| 126 | + schemas = get_schemas() |
| 127 | + st.dataframe(schemas) |
| 128 | + ``` |
| 129 | + """, |
| 130 | + }, |
| 131 | +] |
| 132 | + |
| 133 | +with tab_b: |
| 134 | + for i, row in enumerate(table): |
| 135 | + with st.expander(f"**{row['type']} ({row['param']})**", expanded=(i == 0)): |
| 136 | + st.markdown(f"**Description**: {row['description']}") |
| 137 | + st.markdown(row["code"]) |
0 commit comments