@@ -226,9 +226,10 @@ There are many well-known deep learning models for images. If the task at hand i
226226
227227
228228``` python
229- from sparkdl import readImages, DeepImagePredictor
229+ from pyspark.ml.image import ImageSchema
230+ from sparkdl import DeepImagePredictor
230231
231- image_df = readImages(sample_img_dir)
232+ image_df = ImageSchema. readImages(sample_img_dir)
232233
233234predictor = DeepImagePredictor(inputCol = " image" , outputCol = " predicted_labels" , modelName = " InceptionV3" , decodePredictions = True , topK = 10 )
234235predictions_df = predictor.transform(image_df)
@@ -239,7 +240,8 @@ Deep Learning Pipelines provides an MLlib Transformer that will apply the given
239240
240241
241242``` python
242- from sparkdl import readImages, TFImageTransformer
243+ from pyspark.ml.image import ImageSchema
244+ from sparkdl import TFImageTransformer
243245import sparkdl.graph.utils as tfx # strip_and_freeze_until was moved from sparkdl.transformers to sparkdl.graph.utils in 0.2.0
244246from sparkdl.transformers import utils
245247import tensorflow as tf
@@ -255,7 +257,7 @@ transformer = TFImageTransformer(inputCol="image", outputCol="predictions", grap
255257 inputTensor = image_arr, outputTensor = resized_images,
256258 outputMode = " image" )
257259
258- image_df = readImages(sample_img_dir)
260+ image_df = ImageSchema. readImages(sample_img_dir)
259261processed_image_df = transformer.transform(image_df)
260262```
261263
@@ -456,9 +458,9 @@ registerKerasImageUDF("inceptionV3_udf_with_preprocessing", InceptionV3(weights=
456458Once a UDF has been registered, it can be used in a SQL query, e.g.
457459
458460``` python
459- from sparkdl import readImages
461+ from pyspark.ml.image import ImageSchema
460462
461- image_df = readImages(sample_img_dir)
463+ image_df = ImageSchema. readImages(sample_img_dir)
462464image_df.registerTempTable(" sample_images" )
463465```
464466
0 commit comments