|
| 1 | +package acceptance |
| 2 | + |
| 3 | +import ( |
| 4 | + "context" |
| 5 | + "fmt" |
| 6 | + "testing" |
| 7 | + |
| 8 | + "github.com/databricks/databricks-sdk-go" |
| 9 | + "github.com/hashicorp/terraform-plugin-sdk/v2/helper/acctest" |
| 10 | + "github.com/hashicorp/terraform-plugin-sdk/v2/terraform" |
| 11 | +) |
| 12 | + |
| 13 | +func TestAccModelServing(t *testing.T) { |
| 14 | + name := fmt.Sprintf("terraform-test-model-serving-%[1]s", |
| 15 | + acctest.RandStringFromCharSet(5, acctest.CharSetAlphaNum)) |
| 16 | + workspaceLevel(t, step{ |
| 17 | + Template: fmt.Sprintf(` |
| 18 | + data "databricks_spark_version" "latest" { |
| 19 | + } |
| 20 | + resource "databricks_cluster" "this" { |
| 21 | + cluster_name = "singlenode-{var.RANDOM}" |
| 22 | + spark_version = data.databricks_spark_version.latest.id |
| 23 | + instance_pool_id = "{env.TEST_INSTANCE_POOL_ID}" |
| 24 | + num_workers = 0 |
| 25 | + autotermination_minutes = 10 |
| 26 | + spark_conf = { |
| 27 | + "spark.databricks.cluster.profile" = "singleNode" |
| 28 | + "spark.master" = "local[*]" |
| 29 | + } |
| 30 | + custom_tags = { |
| 31 | + "ResourceClass" = "SingleNode" |
| 32 | + } |
| 33 | + library { |
| 34 | + pypi { |
| 35 | + package = "mlflow" |
| 36 | + } |
| 37 | + } |
| 38 | + } |
| 39 | + resource "databricks_mlflow_experiment" "exp" { |
| 40 | + name = "/Shared/%[1]s-exp" |
| 41 | + } |
| 42 | + resource "databricks_mlflow_model" "model" { |
| 43 | + name = "%[1]s-model" |
| 44 | + } |
| 45 | + `, name), |
| 46 | + Check: func(s *terraform.State) error { |
| 47 | + w := databricks.Must(databricks.NewWorkspaceClient()) |
| 48 | + id := s.RootModule().Resources["databricks_cluster.this"].Primary.ID |
| 49 | + w.CommandExecutor.Execute(context.Background(), id, "python", fmt.Sprintf(` |
| 50 | + import time |
| 51 | + import mlflow |
| 52 | + import mlflow.pyfunc |
| 53 | + from mlflow.tracking.artifact_utils import get_artifact_uri |
| 54 | + from mlflow.tracking.client import MlflowClient |
| 55 | +
|
| 56 | + mlflow.set_experiment("/Shared/%[1]s-exp") |
| 57 | +
|
| 58 | + class SampleModel(mlflow.pyfunc.PythonModel): |
| 59 | + def predict(self, ctx, input_df): |
| 60 | + return 7 |
| 61 | + artifact_path = 'sample_model' |
| 62 | + |
| 63 | + with mlflow.start_run() as new_run: |
| 64 | + mlflow.pyfunc.log_model(python_model=SampleModel(), artifact_path=artifact_path) |
| 65 | + run1_id = new_run.info.run_id |
| 66 | + source = get_artifact_uri(run_id=run1_id, artifact_path=artifact_path) |
| 67 | +
|
| 68 | + client = MlflowClient() |
| 69 | + client.create_model_version(name="%[1]s-model", source=source, run_id=run1_id) |
| 70 | + client.create_model_version(name="%[1]s-model", source=source, run_id=run1_id) |
| 71 | + while client.get_model_version(name="%[1]s-model", version="1").getStatus() != ModelRegistry.ModelVersionStatus.READY: |
| 72 | + time.sleep(10) |
| 73 | + while client.get_model_version(name="%[1]s-model", version="2").getStatus() != ModelRegistry.ModelVersionStatus.READY: |
| 74 | + time.sleep(10) |
| 75 | + `, name)) |
| 76 | + return nil |
| 77 | + }, |
| 78 | + }, |
| 79 | + step{ |
| 80 | + Template: fmt.Sprintf(` |
| 81 | + resource "databricks_mlflow_experiment" "exp" { |
| 82 | + name = "/Shared/%[1]s-exp" |
| 83 | + } |
| 84 | + resource "databricks_mlflow_model" "model" { |
| 85 | + name = "%[1]s-model" |
| 86 | + } |
| 87 | + resource "databricks_model_serving" "endpoint" { |
| 88 | + name = "%[1]s" |
| 89 | + config { |
| 90 | + served_models { |
| 91 | + name = "prod_model" |
| 92 | + model_name = "%[1]s-model" |
| 93 | + model_version = "1" |
| 94 | + workload_size = "Small" |
| 95 | + scale_to_zero_enabled = true |
| 96 | + } |
| 97 | + served_models { |
| 98 | + name = "candidate_model" |
| 99 | + model_name = "%[1]s-model" |
| 100 | + model_version = "2" |
| 101 | + workload_size = "Small" |
| 102 | + scale_to_zero_enabled = false |
| 103 | + } |
| 104 | + traffic_config { |
| 105 | + routes { |
| 106 | + served_model_name = "prod_model" |
| 107 | + traffic_percentage = 90 |
| 108 | + } |
| 109 | + routes { |
| 110 | + served_model_name = "candidate_model" |
| 111 | + traffic_percentage = 10 |
| 112 | + } |
| 113 | + } |
| 114 | + } |
| 115 | + } |
| 116 | + `, name), |
| 117 | + }, |
| 118 | + step{ |
| 119 | + Template: fmt.Sprintf(` |
| 120 | + resource "databricks_mlflow_experiment" "exp" { |
| 121 | + name = "/Shared/%[1]s-exp" |
| 122 | + } |
| 123 | + resource "databricks_mlflow_model" "model" { |
| 124 | + name = "%[1]s-model" |
| 125 | + } |
| 126 | + resource "databricks_model_serving" "endpoint" { |
| 127 | + name = "%[1]s" |
| 128 | + config { |
| 129 | + served_models { |
| 130 | + name = "prod_model" |
| 131 | + model_name = "%[1]s-model" |
| 132 | + model_version = "1" |
| 133 | + workload_size = "Small" |
| 134 | + scale_to_zero_enabled = true |
| 135 | + } |
| 136 | + traffic_config { |
| 137 | + routes { |
| 138 | + served_model_name = "prod_model" |
| 139 | + traffic_percentage = 100 |
| 140 | + } |
| 141 | + } |
| 142 | + } |
| 143 | + } |
| 144 | + `, name), |
| 145 | + }, |
| 146 | + ) |
| 147 | +} |
0 commit comments