diff --git a/python/tests/unit_test_data/json-fixer.ipynb b/python/tests/unit_test_data/json-fixer.ipynb deleted file mode 100644 index 7c5a5cb1..00000000 --- a/python/tests/unit_test_data/json-fixer.ipynb +++ /dev/null @@ -1,287 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "\n", - "with open('./resample_tests.json', 'r') as file:\n", - " before = json.load(file)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "def update_dict(dictionary, key, value):\n", - " if value is not None:\n", - " dictionary[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "after = {}\n", - "for i in before.keys(): # i is test class\n", - " if i == \"__SharedData\":\n", - " continue\n", - " after[i] = {}\n", - " for j in before[i].keys(): # j is test method\n", - " after[i][j] = {}\n", - " for k in before[i][j].keys(): # input, expected, etc.\n", - " tsdf = {}\n", - " update_dict(tsdf, \"ts_col\", before[i][j][k].get(\"ts_col\", None))\n", - " update_dict(tsdf, \"other_ts_cols\", before[i][j][k].get(\"other_ts_cols\", None))\n", - " update_dict(tsdf, \"partition_cols\", before[i][j][k].get(\"partition_cols\", None))\n", - " update_dict(tsdf, \"sequence_col\", before[i][j][k].get(\"sequence_col\", None))\n", - " update_dict(tsdf, \"start_ts\", before[i][j][k].get(\"start_ts\", None))\n", - " update_dict(tsdf, \"end_ts\", before[i][j][k].get(\"end_ts\", None))\n", - " update_dict(tsdf, \"series\", before[i][j][k].get(\"series\", None))\n", - " sdf = {}\n", - " update_dict(sdf, \"schema\", before[i][j][k].get(\"schema\", None))\n", - " update_dict(sdf, \"ts_convert\", before[i][j][k].get(\"ts_convert\", None))\n", - " update_dict(sdf, \"data\", before[i][j][k].get(\"data\", None))\n", - " after[i][j][k] = {\n", - " \"tsdf\": tsdf,\n", - " \"df\": sdf,\n", - " \"$ref\": before[i][j][k].get(\"$ref\", None)\n", - " }" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "after_2 = {}\n", - "for i in before.keys(): # i is test class\n", - " if i != \"__SharedData\":\n", - " continue\n", - " after_2[i] = {}\n", - " for j in before[i].keys(): # j is test method\n", - " tsdf = {}\n", - " update_dict(tsdf, \"ts_col\", before[i][j].get(\"ts_col\", None))\n", - " update_dict(tsdf, \"other_ts_cols\", before[i][j].get(\"other_ts_cols\", None))\n", - " update_dict(tsdf, \"partition_cols\", before[i][j].get(\"partition_cols\", None))\n", - " update_dict(tsdf, \"sequence_col\", before[i][j].get(\"sequence_col\", None))\n", - " update_dict(tsdf, \"start_ts\", before[i][j].get(\"start_ts\", None))\n", - " update_dict(tsdf, \"end_ts\", before[i][j].get(\"end_ts\", None))\n", - " update_dict(tsdf, \"series\", before[i][j].get(\"series\", None))\n", - " sdf = {}\n", - " update_dict(sdf, \"schema\", before[i][j].get(\"schema\", None))\n", - " update_dict(sdf, \"ts_convert\", before[i][j].get(\"ts_convert\", None))\n", - " update_dict(sdf, \"data\", before[i][j].get(\"data\", None))\n", - " after_2[i][j] = {\n", - " \"tsdf\": tsdf,\n", - " \"df\": sdf,\n", - " }" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'__SharedData': {'input_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, date string, event_ts string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', 'SAME_DT', '2020-08-01 00:00:10', 349.21, 10.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:00:11', 340.21, 9.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:01:12', 353.32, 8.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:01:13', 351.32, 7.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:01:14', 350.32, 6.0],\n", - " ['S1', 'SAME_DT', '2020-09-01 00:01:12', 361.1, 5.0],\n", - " ['S1', 'SAME_DT', '2020-09-01 00:19:12', 362.1, 4.0]]}}}}" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "after_2" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'ResampleUnitTests': {'test_appendAggKey_freq_is_none': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'}},\n", - " 'test_appendAggKey_freq_microsecond': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'}},\n", - " 'test_appendAggKey_freq_is_invalid': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'}},\n", - " 'test_aggregate_floor': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, date string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', '2020-08-01 00:00:00', 'SAME_DT', 349.21, 10.0],\n", - " ['S1', '2020-09-01 00:00:00', 'SAME_DT', 361.1, 5.0]]},\n", - " '$ref': None}},\n", - " 'test_aggregate_average': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, trade_pr double, trade_pr_2 double',\n", - " 'data': [['S1', '2020-08-01 00:00:00', 348.8760009765625, 8.0],\n", - " ['S1', '2020-09-01 00:00:00', 361.6000061035156, 4.5]]},\n", - " '$ref': None}},\n", - " 'test_aggregate_min': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, date string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', '2020-08-01 00:00:00', 'SAME_DT', 340.21, 6.0],\n", - " ['S1', '2020-09-01 00:00:00', 'SAME_DT', 361.1, 4.0]]},\n", - " '$ref': None}},\n", - " 'test_aggregate_min_with_prefix': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, min_date string, min_trade_pr float, min_trade_pr_2 float',\n", - " 'data': {'$ref': '#/ResampleUnitTests/test_aggregate_min/expected_data/data'}},\n", - " '$ref': None}},\n", - " 'test_aggregate_min_with_fill': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, date string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', '2020-08-01 00:00:00', 'SAME_DT', 340.21, 6.0],\n", - " ['S1', '2020-08-02 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-03 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-04 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-05 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-06 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-07 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-08 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-09 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-10 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-11 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-12 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-13 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-14 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-15 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-16 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-17 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-18 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-19 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-20 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-21 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-22 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-23 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-24 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-25 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-26 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-27 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-28 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-29 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-30 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-08-31 00:00:00', None, 0.0, 0.0],\n", - " ['S1', '2020-09-01 00:00:00', 'SAME_DT', 361.1, 4.0]]},\n", - " '$ref': None}},\n", - " 'test_aggregate_max': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, date string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', '2020-08-01 00:00:00', 'SAME_DT', 353.32, 10.0],\n", - " ['S1', '2020-09-01 00:00:00', 'SAME_DT', 362.1, 5.0]]},\n", - " '$ref': None}},\n", - " 'test_aggregate_ceiling': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, date string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', '2020-08-01 00:00:00', 'SAME_DT', 350.32, 6.0],\n", - " ['S1', '2020-09-01 00:00:00', 'SAME_DT', 362.1, 4.0]]},\n", - " '$ref': None}},\n", - " 'test_aggregate_invalid_func_arg': {'input_data': {'tsdf': {},\n", - " 'df': {},\n", - " '$ref': '#/__SharedData/input_data'},\n", - " 'expected_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, event_ts string, date string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', '2020-07-31 20:00:00', 'SAME_DT', 348.88, 8.0],\n", - " ['S1', '2020-08-31 20:00:00', 'SAME_DT', 361.6, 4.5]]},\n", - " '$ref': None}}},\n", - " '__SharedData': {'input_data': {'tsdf': {'ts_col': 'event_ts',\n", - " 'partition_cols': ['symbol']},\n", - " 'df': {'schema': 'symbol string, date string, event_ts string, trade_pr float, trade_pr_2 float',\n", - " 'data': [['S1', 'SAME_DT', '2020-08-01 00:00:10', 349.21, 10.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:00:11', 340.21, 9.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:01:12', 353.32, 8.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:01:13', 351.32, 7.0],\n", - " ['S1', 'SAME_DT', '2020-08-01 00:01:14', 350.32, 6.0],\n", - " ['S1', 'SAME_DT', '2020-09-01 00:01:12', 361.1, 5.0],\n", - " ['S1', 'SAME_DT', '2020-09-01 00:19:12', 362.1, 4.0]]}}}}" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "combined = after | after_2\n", - "combined" - ] - }, - { - "metadata": {}, - "cell_type": "code", - "outputs": [], - "execution_count": null, - "source": "" - } - ], - "metadata": { - "kernelspec": { - "display_name": ".venv142", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}