|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "8607eb0e", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Julia Sets" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": null, |
| 14 | + "id": "87bd1a0f", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "%matplotlib inline\n", |
| 19 | + "from matplotlib import pyplot as plt\n", |
| 20 | + "import numpy as np" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": null, |
| 26 | + "id": "3f5a75af", |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "def julia(c, size=256, center=(0.0, 0.0), zoom=1.0, iters=256):\n", |
| 31 | + " x, y = np.meshgrid(\n", |
| 32 | + " np.linspace(-1, 1, size)/zoom + center[0], \n", |
| 33 | + " np.linspace(-1, 1, size)/zoom + center[1], \n", |
| 34 | + " )\n", |
| 35 | + " z = x + 1j * y\n", |
| 36 | + " im = np.zeros(z.shape)\n", |
| 37 | + " ix = np.ones(z.shape, dtype=bool)\n", |
| 38 | + " for i in range(iters):\n", |
| 39 | + " z[ix] = z[ix] ** 2 + c\n", |
| 40 | + " ix = np.abs(z) < 2\n", |
| 41 | + " im += ix\n", |
| 42 | + " return im" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "id": "79556895", |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "plt.imshow(julia(-0.4+0.6j), cmap='magma')\n", |
| 53 | + "plt.axis(False);" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": null, |
| 59 | + "id": "a43baa42", |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "plt.imshow(julia(-0.4+0.6j, center=(0.34, -0.30), zoom=10000.0), cmap='magma')\n", |
| 64 | + "plt.axis(False);" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": null, |
| 70 | + "id": "3c63ce73", |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "c = (\n", |
| 75 | + " -0.4 + 0.6j, \n", |
| 76 | + " -0.74543 + 0.11301j, \n", |
| 77 | + " -0.75 + 0.11j, \n", |
| 78 | + " -0.1 + 0.651j,\n", |
| 79 | + " -0.835 - 0.2321j,\n", |
| 80 | + " -0.70176 - 0.3842j,\n", |
| 81 | + ")" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": null, |
| 87 | + "id": "cfc85940", |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "noise_level = 5.0\n", |
| 92 | + "\n", |
| 93 | + "fig, ax = plt.subplots(3, 2, figsize=(10, 16))\n", |
| 94 | + "for c_, a in zip(c, ax.flatten()):\n", |
| 95 | + " img = julia(c_, zoom=0.5) \n", |
| 96 | + " img += np.random.randn(*img.shape) * noise_level\n", |
| 97 | + " a.imshow(img, cmap='magma')\n", |
| 98 | + " a.axis(False)" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "id": "b01e70d9", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "# Image processing" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "b4069a34", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "from skimage import data\n", |
| 117 | + "from skimage import filters" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "id": "39bc25c7", |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [], |
| 126 | + "source": [ |
| 127 | + "from skimage.morphology import disk\n", |
| 128 | + "from skimage import restoration" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": null, |
| 134 | + "id": "aa225a15", |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "noise_level = 50.0\n", |
| 139 | + "img = julia(-0.4+0.6j, size=200)\n", |
| 140 | + "noise_img = img + np.random.randn(*img.shape) * noise_level\n", |
| 141 | + "median_img = filters.median(noise_img, disk(3))\n", |
| 142 | + "tv_img = restoration.denoise_tv_chambolle(noise_img, weight=20.0)\n", |
| 143 | + "wavelet_img = restoration.denoise_wavelet(noise_img)\n", |
| 144 | + "gaussian_img = filters.gaussian(noise_img, sigma=1.8)" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "d60ecafd", |
| 151 | + "metadata": { |
| 152 | + "scrolled": false |
| 153 | + }, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "fig, ax = plt.subplots(3, 2, figsize=(12, 18))\n", |
| 157 | + "for a, (im, title) in zip(\n", |
| 158 | + " ax.flatten(),\n", |
| 159 | + " ((img, 'original'), \n", |
| 160 | + " (noise_img, 'original+noise'),\n", |
| 161 | + " (gaussian_img, 'gaussian'),\n", |
| 162 | + " (median_img, 'median'), \n", |
| 163 | + " (wavelet_img, 'wavelet'),\n", |
| 164 | + " (tv_img, 'tv'), )):\n", |
| 165 | + " a.imshow(im, cmap='magma', vmin=0, vmax=255)\n", |
| 166 | + " a.axis(False)\n", |
| 167 | + " a.set_title(title)" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "markdown", |
| 172 | + "id": "b495345a", |
| 173 | + "metadata": {}, |
| 174 | + "source": [ |
| 175 | + "# DataJoint Pipeline" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "id": "9015c43e", |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "import datajoint as dj" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "id": "62067735", |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "schema = dj.Schema('julia')" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": null, |
| 201 | + "id": "4c4ef4a9", |
| 202 | + "metadata": {}, |
| 203 | + "outputs": [], |
| 204 | + "source": [ |
| 205 | + "img.max()" |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": null, |
| 211 | + "id": "5630641b", |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [], |
| 214 | + "source": [] |
| 215 | + } |
| 216 | + ], |
| 217 | + "metadata": { |
| 218 | + "kernelspec": { |
| 219 | + "display_name": "benv", |
| 220 | + "language": "python", |
| 221 | + "name": "benv" |
| 222 | + }, |
| 223 | + "language_info": { |
| 224 | + "codemirror_mode": { |
| 225 | + "name": "ipython", |
| 226 | + "version": 3 |
| 227 | + }, |
| 228 | + "file_extension": ".py", |
| 229 | + "mimetype": "text/x-python", |
| 230 | + "name": "python", |
| 231 | + "nbconvert_exporter": "python", |
| 232 | + "pygments_lexer": "ipython3", |
| 233 | + "version": "3.10.4" |
| 234 | + } |
| 235 | + }, |
| 236 | + "nbformat": 4, |
| 237 | + "nbformat_minor": 5 |
| 238 | +} |
0 commit comments