@@ -16,66 +16,6 @@ This is updated frequently but right now this is the most exhaustive list of typ
1616
1717## Premium Interview Questions
1818
19- ### What is Pandas and Why is it Essential for Data Science? - Google, Amazon Interview Question
20-
21- ** Difficulty:** 🟢 Easy | ** Tags:** ` Basics ` , ` Introduction ` , ` Data Science ` | ** Asked by:** Google, Amazon, Meta
22-
23- ??? success "View Answer"
24-
25- **Pandas Overview:**
26-
27- Python library for data manipulation and analysis. Built on NumPy.
28-
29- **Core Data Structures:**
30-
31- | Structure | Description | Use Case |
32- |-----------|-------------|----------|
33- | Series | 1D labeled array | Single column |
34- | DataFrame | 2D labeled table | Tabular data |
35- | Index | Row/column labels | Fast lookups |
36-
37- **Why Pandas?**
38-
39- ```python
40- import pandas as pd
41-
42- # Read any format
43- df = pd.read_csv('data.csv')
44- df = pd.read_excel('data.xlsx')
45- df = pd.read_json('data.json')
46- df = pd.read_parquet('data.parquet')
47-
48- # Quick exploration
49- df.head() # First 5 rows
50- df.info() # Data types, memory
51- df.describe() # Statistics
52-
53- # Powerful operations
54- df.groupby('category').agg({'sales': 'sum'})
55- df.merge(other_df, on='key')
56- df.pivot_table(values='sales', index='date', columns='product')
57- ```
58-
59- **Key Features:**
60-
61- - Handles missing data (NaN)
62- - Label-based slicing and indexing
63- - GroupBy for split-apply-combine
64- - Time series functionality
65- - Vectorized operations
66-
67- !!! tip "Interviewer's Insight"
68- **What they're testing:** Basic understanding of data tools.
69-
70- **Strong answer signals:**
71-
72- - Knows Series vs DataFrame
73- - Mentions NumPy foundation
74- - Discusses real use cases
75- - Aware of alternatives (Polars, Dask)
76-
77- ---
78-
7919### Explain loc vs iloc - Key Difference - Google, Amazon, Meta Interview Question
8020
8121** Difficulty:** 🟢 Easy | ** Tags:** ` Indexing ` , ` Selection ` , ` Core ` | ** Asked by:** Google, Amazon, Meta, Apple, Netflix
0 commit comments