Skip to content

Commit 1fd7cd0

Browse files
docs: Remove basic Pandas overview and expand system design recommendation answer with detailed architecture and code examples.
1 parent 91d46ad commit 1fd7cd0

File tree

5 files changed

+5493
-151
lines changed

5 files changed

+5493
-151
lines changed

docs/Interview-Questions/Pandas.md

Lines changed: 0 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -16,66 +16,6 @@ This is updated frequently but right now this is the most exhaustive list of typ
1616

1717
## Premium Interview Questions
1818

19-
### What is Pandas and Why is it Essential for Data Science? - Google, Amazon Interview Question
20-
21-
**Difficulty:** 🟢 Easy | **Tags:** `Basics`, `Introduction`, `Data Science` | **Asked by:** Google, Amazon, Meta
22-
23-
??? success "View Answer"
24-
25-
**Pandas Overview:**
26-
27-
Python library for data manipulation and analysis. Built on NumPy.
28-
29-
**Core Data Structures:**
30-
31-
| Structure | Description | Use Case |
32-
|-----------|-------------|----------|
33-
| Series | 1D labeled array | Single column |
34-
| DataFrame | 2D labeled table | Tabular data |
35-
| Index | Row/column labels | Fast lookups |
36-
37-
**Why Pandas?**
38-
39-
```python
40-
import pandas as pd
41-
42-
# Read any format
43-
df = pd.read_csv('data.csv')
44-
df = pd.read_excel('data.xlsx')
45-
df = pd.read_json('data.json')
46-
df = pd.read_parquet('data.parquet')
47-
48-
# Quick exploration
49-
df.head() # First 5 rows
50-
df.info() # Data types, memory
51-
df.describe() # Statistics
52-
53-
# Powerful operations
54-
df.groupby('category').agg({'sales': 'sum'})
55-
df.merge(other_df, on='key')
56-
df.pivot_table(values='sales', index='date', columns='product')
57-
```
58-
59-
**Key Features:**
60-
61-
- Handles missing data (NaN)
62-
- Label-based slicing and indexing
63-
- GroupBy for split-apply-combine
64-
- Time series functionality
65-
- Vectorized operations
66-
67-
!!! tip "Interviewer's Insight"
68-
**What they're testing:** Basic understanding of data tools.
69-
70-
**Strong answer signals:**
71-
72-
- Knows Series vs DataFrame
73-
- Mentions NumPy foundation
74-
- Discusses real use cases
75-
- Aware of alternatives (Polars, Dask)
76-
77-
---
78-
7919
### Explain loc vs iloc - Key Difference - Google, Amazon, Meta Interview Question
8020

8121
**Difficulty:** 🟢 Easy | **Tags:** `Indexing`, `Selection`, `Core` | **Asked by:** Google, Amazon, Meta, Apple, Netflix

0 commit comments

Comments
 (0)