Skip to content

Commit 7a175d4

Browse files
authored
Fix404s (#308)
1 parent 804c790 commit 7a175d4

32 files changed

+138
-128
lines changed

docs/antora-ragstack.yml

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,11 @@ title: 'RAGStack'
44
start_page: ROOT:index.adoc
55
asciidoc:
66
attributes:
7+
company: 'DataStax'
78
product: 'RAGStack'
8-
db-cassandra: 'Serverless (Non-Vector)'
9-
db-vector: 'Serverless (Vector)'
9+
db-cassandra: 'Astra DB Serverless (Non-Vector)'
10+
db-vector: 'Astra DB Serverless (Vector)'
11+
db-serverless: 'Astra DB Serverless'
12+
astra-ui: 'Astra Portal'
1013
nav:
1114
- modules/ROOT/nav.adoc

docs/modules/ROOT/pages/dev-environment.adoc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -113,9 +113,9 @@ Installing the current project: temporary-astra (0.1.0)
113113
+
114114
. To deactivate the virtual environment, type `exit`.
115115

116-
== Connect to your {db-vector} database
116+
== Connect to your vector-enabled {db-serverless} database
117117

118-
RAGStack includes the Astrapy library for connecting your local development environment to your {db-vector} database.
118+
RAGStack includes the Astrapy library for connecting your local development environment to your vector-enabled {db-serverless} database.
119119

120120
. If you don't have a vector database, create one at https://astra.datastax.com/.
121121
+

docs/modules/ROOT/pages/index.adoc

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,9 +9,9 @@
99
.What is {product}?
1010
****
1111
--
12-
{product} is a curated stack of the best open-source software for easing implementation of the RAG pattern in production-ready applications using Astra Vector DB or Apache Cassandra as a vector store.
12+
{product} is a curated stack of the best open-source software for easing implementation of the RAG pattern in production-ready applications using {db-serverless} or Apache Cassandra as a vector store.
1313
14-
A single command (`pip install ragstack-ai`) unlocks all the open-source packages required to build production-ready RAG applications with LangChain and the Astra Vector database.
14+
A single command (`pip install ragstack-ai`) unlocks all the open-source packages required to build production-ready RAG applications with LangChain and the vector-enabled {db-serverless} database.
1515
1616
For each open-source project included in {product}, we select a version lineup and then test the combination for compatibility, performance, and security. Our extensive test suite ensures that {product} components work well together so you can confidently deploy them in production. We also run security scans on all components using industry-standard tools to ensure that you are not exposed to known vulnerabilities.
1717
@@ -37,7 +37,7 @@ If you are already using an open-source library that is part of {product} in you
3737
3838
* {product} leverages the https://python.langchain.com/docs/get_started/introduction[LangChain^]{external-link-icon} ecosystem and is fully compatible with https://docs.smith.langchain.com/[LangSmith^]{external-link-icon} for monitoring your AI deployments.
3939
40-
* The https://docs.datastax.com/en/astra/astra-db-vector/get-started/quickstart.html[{astra_db} {db-vector}] database provides the best performance and scalability for RAG applications, in addition to being particularly well-suited to RAG workloads like question answering, semantic search, and semantic caching.
40+
* The https://docs.datastax.com/en/astra/astra-db-vector/get-started/quickstart.html[{db-serverless}] database provides the best performance and scalability for RAG applications, in addition to being particularly well-suited to RAG workloads like question answering, semantic search, and semantic caching.
4141
--
4242
// [.landing-card-body-icon]
4343
// image::what-is-astra-db.svg[Astra DB card icon,40]

docs/modules/ROOT/pages/migration.adoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ RAGStack contains the below packages as of version `0.7.0`. When RAGStack is ins
2929

3030
== Example LangChain migration
3131

32-
Here is a simple LangChain application that loads a dataset from HuggingFace and embeds the document objects in AstraDB.
32+
Here is a simple LangChain application that loads a dataset from HuggingFace and embeds the document objects in {db-serverless}.
3333

3434
.langchain-migration.py
3535
[%collapsible%open]

docs/modules/ROOT/pages/prerequisites.adoc

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
= Notebook Prerequisites
22

3-
Most of our example notebooks use Astra {db-vector} as the vector database and OpenAI as the LLM.
3+
Most of our example notebooks use {db-serverless} as the vector database and OpenAI as the LLM.
44

5-
. Create an Astra {db-vector} database at https://astra.datastax.com. For detailed instructions on database creation, see https://docs.datastax.com/en/astra/astra-db-vector/administration/manage-databases.html#create-a-serverless-vector-database[Create a serverless vector database].
5+
. Create an vector-enabled {db-serverless} database at https://astra.datastax.com. For detailed instructions on database creation, see https://docs.datastax.com/en/astra/astra-db-vector/administration/manage-databases.html#create-a-serverless-vector-database[Create a serverless vector database].
66

77
. Create an OpenAI key at https://platform.openai.com.
88
. Install RAGStack with `pip install ragstack-ai`.
@@ -20,7 +20,7 @@ You'll need these values for the notebooks:
2020
| Must have Database Administrator permissions
2121

2222
| Astra API endpoint
23-
| \https://2d6b7600-886e-4852-8f9a-1b59508df141-us-east-2.apps.astra.datastax.com\
23+
| \https://9d9b9999-999e-9999-9f9a-9b99999dg999-us-east-2.apps.astra.datastax.com\
2424
| Endpoint format is \https://<ASTRA_DB_ID>-<ASTRA_DB_REGION>.apps.astra.datastax.com
2525

2626
| OpenAI key
@@ -33,7 +33,7 @@ You'll need these values for the notebooks:
3333
Automatically created if it doesn't exist.
3434

3535
| GCP service account JSON
36-
| `your-project-name-017849-r83b66711494.json`
36+
| `your-project-name-999999-r99b99999999json`
3737
| Credentials for GCP usage.
3838
See the https://developers.google.com/workspace/guides/create-credentials#create_credentials_for_a_service_account[GCP documentation^]{external-link-icon}.
3939

docs/modules/ROOT/pages/quickstart.adoc

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
image::https://colab.research.google.com/assets/colab-badge.svg[align="left",link="https://colab.research.google.com/github/datastax/ragstack-ai/blob/main/examples/notebooks/quickstart.ipynb"]
44

5-
This quickstart demonstrates a basic RAG pattern using RAGStack and the AstraDB vector database to retrieve context and pass it to a language model for generation.
5+
This quickstart demonstrates a basic RAG pattern using RAGStack and the vector-enabled {db-serverless} database to retrieve context and pass it to a language model for generation.
66

77
1. <<Construct information base>>
88
2. <<Basic retrieval>>
@@ -69,13 +69,13 @@ Successfully installed astrapy-0.6.1 backoff-2.2.1 chardet-5.2.0 emoji-2.8.0 fil
6969
+
7070
. If you don't have a vector database, create one at https://astra.datastax.com/.
7171
+
72-
The Astra application token must have Database Administrator permissions (e.g. `AstraCS:WSnyFUhRxsrg…`​).
72+
The {db-serverless} application token is associated automatically with the Database Administrator permission. An auth token example: `AstraCS:WSnyFUhRxsrg...`).
7373
+
74-
The Astra API endpoint is available in the Astra Portal (e.g. `https://<ASTRA_DB_ID>-<ASTRA_DB_REGION>.apps.astra.datastax.com`).
74+
The Astra API endpoint is available in the {astra_ui}. Its format is \https://<ASTRA_DB_ID>-<ASTRA_DB_REGION>.apps.astra.datastax.com.
7575
+
76-
Create an OpenAI key at https://platform.openai.com/ (e.g. `sk-xxxx`).
76+
Create an OpenAI key at https://platform.openai.com/.
7777
+
78-
You must have an existing collection in Astra (e.g. `test`). If you don't have one, create one in the Astra portal, or with the Data API (using the `.env` values from the next step):
78+
You must have an existing collection in {db-serverless}, such as `test`). If you don't have one, create one in {astra-ui}, or with the Data API (using the `.env` values from the next step):
7979
+
8080
[source,curl]
8181
----

docs/modules/ROOT/pages/tests.adoc

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,20 @@
11
= RAGStack Tests
22

3-
The latest RAGStack test reports are available https://ragstack-ai.testspace.com[here]{external-link-icon}.
3+
The latest RAGStack test reports are available on the https://ragstack-ai.testspace.com/[Testspace dashboard]{external-link-icon}.
44

55
== Why is this important?
66

77
Generative AI moves very quickly. The RAGStack test suite is designed to ensure that the RAGStack components are working together as expected, no matter what new features are added or what new versions of the underlying components are released upstream.
88

99
This thoroughly tested approach allows your enterprise to confidently deploy RAGStack in production without worrying about breaking changes.
1010

11-
For the test source code, see https://github.com/datastax/ragstack-ai/tree/main/ragstack-e2e-tests[ragstack-e2e-tests]{external-link-icon}.
11+
For the test source code, see https://github.com/datastax/ragstack-ai/tree/main/ragstack-e2e-tests[ragstack-e2e-tests]{external-link-icon} GitHub repository.
1212

1313
== Testspace reports
1414

1515
RAGStack tests are published to https://ragstack-ai.testspace.com/[Testspace]{external-link-icon}.
1616

17-
Tests are run multiple times daily against DSE (Cassandra) and AstraDB (Cassandra as a Service) vector databases.
17+
Tests are run multiple times daily against DataStax Enterprise (DSE) and vector-enabled {db-serverless} databases.
1818

1919
=== Test suites
2020
[%autowidth]
@@ -28,8 +28,8 @@ Tests are run multiple times daily against DSE (Cassandra) and AstraDB (Cassandr
2828
e2e_tests.langchain.test_document_loaders
2929
e2e_tests.llama_index.test_compatibility_rag
3030

31-
| RAGStack test suite - LangChain dev - AstraDB
32-
| Tests LangChain against AstraDB snapshot
31+
| RAGStack test suite - LangChain dev - {db-serverless}
32+
| Tests LangChain against {db-serverless} snapshot
3333
| e2e_tests.langchain.test_astra
3434
e2e_tests.langchain.test_compatibility_rag
3535
e2e_tests.langchain.test_document_loaders
@@ -43,8 +43,8 @@ e2e_tests.llama_index.test_compatibility_rag
4343
e2e_tests.langchain.test_document_loaders
4444
e2e_tests.llama_index.test_compatibility_rag
4545

46-
| RAGStack test suite - RAGStack dev - AstraDB
47-
| Tests RAGStack against AstraDB snapshot
46+
| RAGStack test suite - RAGStack dev - {db-serverless}
47+
| Tests RAGStack against {db-serverless} snapshot
4848
| e2e_tests.langchain.test_astra
4949
e2e_tests.langchain.test_compatibility_rag
5050
e2e_tests.langchain.test_document_loaders
@@ -58,8 +58,8 @@ e2e_tests.llama_index.test_compatibility_rag
5858
e2e_tests.langchain.test_document_loaders
5959
e2e_tests.llama_index.test_compatibility_rag
6060

61-
| RAGStack test suite - LLamaIndex dev - AstraDB
62-
| Tests LLamaIndex against AstraDB snapshot
61+
| RAGStack test suite - LLamaIndex dev - {db-serverless}
62+
| Tests LLamaIndex against {db-serverless} snapshot
6363
| e2e_tests.langchain.test_astra
6464
e2e_tests.langchain.test_compatibility_rag
6565
e2e_tests.langchain.test_document_loaders
@@ -134,7 +134,7 @@ e2e_tests.llama_index.test_compatibility_rag
134134
| Tests the AzureBlobStorageContainerLoader, which loads documents from an Azure Blob Storage container.
135135

136136
| `test_astradb_loader`
137-
| Tests the AstraDBLoader, which loads documents from an AstraDB database.
137+
| Tests the AstraDBLoader, which loads documents from an {db-serverless} database.
138138
|===
139139

140140
=== e2e_tests.langchain_llamaindex.test_astra

docs/modules/ROOT/pages/what-is-rag.adoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
image::https://colab.research.google.com/assets/colab-badge.svg[align="left",link="https://colab.research.google.com/github/datastax/ragstack-ai/blob/main/examples/notebooks/quickstart.ipynb"]
44

5-
Retrieval Augmented Generation (RAG) is a popular machine learning technique that retrieves prior context from a memory system to construct a prompt that is passed to a model.
5+
Retrieval-Augmented Generation (RAG) is a popular machine learning technique that retrieves prior context from a memory system to construct a prompt that is passed to a model.
66

77
This means the power of Large Language Models, but trained on your data.
88

docs/modules/default-architecture/pages/generation.adoc

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,9 @@
22

33
Prompts are the starting point for the LLM generation process. They provide context, set the tone, define objectives, and ultimately shape the quality of the response.
44

5-
Prompt design is an entire field of its own, and for further reading, we recommend starting https://www.datastax.com/guides/what-is-prompt-engineering[here]{external-link-icon}. However, we will lay out a starting prompt for a basic RAG pipeline, and demonstrate the CO-STAR technique for organizing prompts for more complex tasks.
5+
Prompt design is an entire field of its own. See https://www.datastax.com/guides/what-is-prompt-engineering[What is Prompt Engineering in AI and How Does it Work?]{external-link-icon}.
6+
7+
In this topic, you can learn how to lay out a starting prompt for a basic RAG pipeline. Then read about the CO-STAR technique that can be used to organize prompts for more complex tasks.
68

79
== Starting prompt
810

docs/modules/default-architecture/pages/loading.adoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Start with LangChain for loading your data instead of manually coding your own pipeline.
44
LangChain likely already provides the functionalities you need.
55

6-
The examples use Astra {db-vector} database for the vector store and assume you have one available. If not, see xref:ROOT:prerequisites.adoc[].
6+
The examples use vector-enabled {db-serverless} database for the vector store and assume you have one available. If not, see xref:ROOT:prerequisites.adoc[].
77

88
== Load PDF from file
99

0 commit comments

Comments
 (0)