|
| 1 | +import math |
| 2 | +import secrets |
| 3 | +from typing import Iterable, List, Optional |
| 4 | + |
| 5 | +import pytest |
| 6 | +from cassandra.cluster import Session |
| 7 | +from langchain_community.graph_vectorstores import CassandraGraphVectorStore |
| 8 | +from langchain_core.documents import Document |
| 9 | +from langchain_core.embeddings import Embeddings |
| 10 | +from langchain_core.graph_vectorstores.links import METADATA_LINKS_KEY, Link |
| 11 | +from ragstack_tests_utils.test_store import KEYSPACE |
| 12 | + |
| 13 | +from .conftest import get_astradb_test_store, get_local_cassandra_test_store |
| 14 | + |
| 15 | + |
| 16 | +class GraphStoreFactory: |
| 17 | + def __init__(self, session: Session, keyspace: str, embedding: Embeddings) -> None: |
| 18 | + self.session = session |
| 19 | + self.keyspace = keyspace |
| 20 | + self.uid = secrets.token_hex(8) |
| 21 | + self.node_table = f"nodes_{self.uid}" |
| 22 | + self.targets_table = f"targets_{self.uid}" |
| 23 | + self.embedding = embedding |
| 24 | + self._store = None |
| 25 | + |
| 26 | + def store( |
| 27 | + self, |
| 28 | + initial_documents: Iterable[Document] = (), |
| 29 | + ids: Optional[Iterable[str]] = None, |
| 30 | + embedding: Optional[Embeddings] = None, |
| 31 | + ) -> CassandraGraphVectorStore: |
| 32 | + if initial_documents and self._store is not None: |
| 33 | + raise ValueError("Store already initialized") |
| 34 | + if self._store is None: |
| 35 | + self._store = CassandraGraphVectorStore.from_documents( |
| 36 | + initial_documents, |
| 37 | + embedding=embedding or self.embedding, |
| 38 | + session=self.session, |
| 39 | + keyspace=self.keyspace, |
| 40 | + node_table=self.node_table, |
| 41 | + targets_table=self.targets_table, |
| 42 | + ids=ids, |
| 43 | + ) |
| 44 | + |
| 45 | + return self._store |
| 46 | + |
| 47 | + def drop(self): |
| 48 | + self.session.execute(f"DROP TABLE IF EXISTS {self.keyspace}.{self.node_table};") |
| 49 | + self.session.execute( |
| 50 | + f"DROP TABLE IF EXISTS {self.keyspace}.{self.targets_table};" |
| 51 | + ) |
| 52 | + |
| 53 | + |
| 54 | +@pytest.fixture(scope="session") |
| 55 | +def openai_embedding() -> Embeddings: |
| 56 | + from langchain_openai import OpenAIEmbeddings |
| 57 | + |
| 58 | + return OpenAIEmbeddings() |
| 59 | + |
| 60 | + |
| 61 | +@pytest.fixture() |
| 62 | +def cassandra(openai_embedding: Embeddings): |
| 63 | + vstore = get_local_cassandra_test_store() |
| 64 | + session = vstore.create_cassandra_session() |
| 65 | + gs_factory = GraphStoreFactory( |
| 66 | + session=session, keyspace=KEYSPACE, embedding=openai_embedding |
| 67 | + ) |
| 68 | + yield gs_factory |
| 69 | + gs_factory.drop() |
| 70 | + |
| 71 | + |
| 72 | +@pytest.fixture() |
| 73 | +def astra_db(openai_embedding: Embeddings): |
| 74 | + vstore = get_astradb_test_store() |
| 75 | + session = vstore.create_cassandra_session() |
| 76 | + gs_factory = GraphStoreFactory( |
| 77 | + session=session, keyspace=KEYSPACE, embedding=openai_embedding |
| 78 | + ) |
| 79 | + yield gs_factory |
| 80 | + gs_factory.drop() |
| 81 | + |
| 82 | + |
| 83 | +class AngularTwoDimensionalEmbeddings(Embeddings): |
| 84 | + """ |
| 85 | + From angles (as strings in units of pi) to unit embedding vectors on a circle. |
| 86 | + """ |
| 87 | + |
| 88 | + def embed_documents(self, texts: List[str]) -> List[List[float]]: |
| 89 | + """ |
| 90 | + Make a list of texts into a list of embedding vectors. |
| 91 | + """ |
| 92 | + return [self.embed_query(text) for text in texts] |
| 93 | + |
| 94 | + def embed_query(self, text: str) -> List[float]: |
| 95 | + """ |
| 96 | + Convert input text to a 'vector' (list of floats). |
| 97 | + If the text is a number, use it as the angle for the |
| 98 | + unit vector in units of pi. |
| 99 | + Any other input text becomes the singular result [0, 0] ! |
| 100 | + """ |
| 101 | + try: |
| 102 | + angle = float(text) |
| 103 | + return [math.cos(angle * math.pi), math.sin(angle * math.pi)] |
| 104 | + except ValueError: |
| 105 | + # Assume: just test string, no attention is paid to values. |
| 106 | + return [0.0, 0.0] |
| 107 | + |
| 108 | + |
| 109 | +def _result_ids(docs: Iterable[Document]) -> List[str]: |
| 110 | + return [d.id for d in docs] |
| 111 | + |
| 112 | + |
| 113 | +@pytest.mark.parametrize("gs_factory", ["cassandra", "astra_db"]) |
| 114 | +def test_mmr_traversal(request, gs_factory: str): |
| 115 | + """ |
| 116 | + Test end to end construction and MMR search. |
| 117 | + The embedding function used here ensures `texts` become |
| 118 | + the following vectors on a circle (numbered v0 through v3): |
| 119 | +
|
| 120 | + ______ v2 |
| 121 | + / \ |
| 122 | + / | v1 |
| 123 | + v3 | . | query |
| 124 | + | / v0 |
| 125 | + |______/ (N.B. very crude drawing) |
| 126 | +
|
| 127 | + With fetch_k==2 and k==2, when query is at (1, ), |
| 128 | + one expects that v2 and v0 are returned (in some order) |
| 129 | + because v1 is "too close" to v0 (and v0 is closer than v1)). |
| 130 | +
|
| 131 | + Both v2 and v3 are reachable via edges from v0, so once it is |
| 132 | + selected, those are both considered. |
| 133 | + """ |
| 134 | + gs_factory = request.getfixturevalue(gs_factory) |
| 135 | + store = gs_factory.store( |
| 136 | + embedding=AngularTwoDimensionalEmbeddings(), |
| 137 | + ) |
| 138 | + |
| 139 | + v0 = Document( |
| 140 | + id="v0", |
| 141 | + page_content="-0.124", |
| 142 | + metadata={ |
| 143 | + METADATA_LINKS_KEY: { |
| 144 | + Link.outgoing(kind="explicit", tag="link"), |
| 145 | + }, |
| 146 | + }, |
| 147 | + ) |
| 148 | + v1 = Document( |
| 149 | + id="v1", |
| 150 | + page_content="+0.127", |
| 151 | + ) |
| 152 | + v2 = Document( |
| 153 | + id="v2", |
| 154 | + page_content="+0.25", |
| 155 | + metadata={ |
| 156 | + METADATA_LINKS_KEY: { |
| 157 | + Link.incoming(kind="explicit", tag="link"), |
| 158 | + }, |
| 159 | + }, |
| 160 | + ) |
| 161 | + v3 = Document( |
| 162 | + id="v3", |
| 163 | + page_content="+1.0", |
| 164 | + metadata={ |
| 165 | + METADATA_LINKS_KEY: { |
| 166 | + Link.incoming(kind="explicit", tag="link"), |
| 167 | + }, |
| 168 | + }, |
| 169 | + ) |
| 170 | + store.add_documents([v0, v1, v2, v3]) |
| 171 | + |
| 172 | + results = store.mmr_traversal_search("0.0", k=2, fetch_k=2) |
| 173 | + assert _result_ids(results) == ["v0", "v2"] |
| 174 | + |
| 175 | + # With max depth 0, no edges are traversed, so this doesn't reach v2 or v3. |
| 176 | + # So it ends up picking "v1" even though it's similar to "v0". |
| 177 | + results = store.mmr_traversal_search("0.0", k=2, fetch_k=2, depth=0) |
| 178 | + assert _result_ids(results) == ["v0", "v1"] |
| 179 | + |
| 180 | + # With max depth 0 but higher `fetch_k`, we encounter v2 |
| 181 | + results = store.mmr_traversal_search("0.0", k=2, fetch_k=3, depth=0) |
| 182 | + assert _result_ids(results) == ["v0", "v2"] |
| 183 | + |
| 184 | + # v0 score is .46, v2 score is 0.16 so it won't be chosen. |
| 185 | + results = store.mmr_traversal_search("0.0", k=2, score_threshold=0.2) |
| 186 | + assert _result_ids(results) == ["v0"] |
| 187 | + |
| 188 | + # with k=4 we should get all of the documents. |
| 189 | + results = store.mmr_traversal_search("0.0", k=4) |
| 190 | + assert _result_ids(results) == ["v0", "v2", "v1", "v3"] |
| 191 | + |
| 192 | + |
| 193 | +@pytest.mark.parametrize("gs_factory", ["cassandra", "astra_db"]) |
| 194 | +def test_write_retrieve_keywords(request, gs_factory: str): |
| 195 | + gs_factory = request.getfixturevalue(gs_factory) |
| 196 | + greetings = Document( |
| 197 | + id="greetings", |
| 198 | + page_content="Typical Greetings", |
| 199 | + metadata={ |
| 200 | + METADATA_LINKS_KEY: { |
| 201 | + Link.incoming(kind="parent", tag="parent"), |
| 202 | + }, |
| 203 | + }, |
| 204 | + ) |
| 205 | + doc1 = Document( |
| 206 | + id="doc1", |
| 207 | + page_content="Hello World", |
| 208 | + metadata={ |
| 209 | + METADATA_LINKS_KEY: { |
| 210 | + Link.outgoing(kind="parent", tag="parent"), |
| 211 | + Link.bidir(kind="kw", tag="greeting"), |
| 212 | + Link.bidir(kind="kw", tag="world"), |
| 213 | + }, |
| 214 | + }, |
| 215 | + ) |
| 216 | + doc2 = Document( |
| 217 | + id="doc2", |
| 218 | + page_content="Hello Earth", |
| 219 | + metadata={ |
| 220 | + METADATA_LINKS_KEY: { |
| 221 | + Link.outgoing(kind="parent", tag="parent"), |
| 222 | + Link.bidir(kind="kw", tag="greeting"), |
| 223 | + Link.bidir(kind="kw", tag="earth"), |
| 224 | + }, |
| 225 | + }, |
| 226 | + ) |
| 227 | + |
| 228 | + store = gs_factory.store([greetings, doc1, doc2]) |
| 229 | + |
| 230 | + # Doc2 is more similar, but World and Earth are similar enough that doc1 also shows |
| 231 | + # up. |
| 232 | + results = store.similarity_search("Earth", k=2) |
| 233 | + assert _result_ids(results) == ["doc2", "doc1"] |
| 234 | + |
| 235 | + results = store.similarity_search("Earth", k=1) |
| 236 | + assert _result_ids(results) == ["doc2"] |
| 237 | + |
| 238 | + results = store.traversal_search("Earth", k=2, depth=0) |
| 239 | + assert _result_ids(results) == ["doc2", "doc1"] |
| 240 | + |
| 241 | + results = store.traversal_search("Earth", k=2, depth=1) |
| 242 | + assert _result_ids(results) == ["doc2", "doc1", "greetings"] |
| 243 | + |
| 244 | + # K=1 only pulls in doc2 (Hello Earth) |
| 245 | + results = store.traversal_search("Earth", k=1, depth=0) |
| 246 | + assert _result_ids(results) == ["doc2"] |
| 247 | + |
| 248 | + # K=1 only pulls in doc2 (Hello Earth). Depth=1 traverses to parent and via keyword |
| 249 | + # edge. |
| 250 | + results = store.traversal_search("Earth", k=1, depth=1) |
| 251 | + assert set(_result_ids(results)) == {"doc2", "doc1", "greetings"} |
| 252 | + |
| 253 | + |
| 254 | +@pytest.mark.parametrize("gs_factory", ["cassandra", "astra_db"]) |
| 255 | +def test_metadata(request, gs_factory: str): |
| 256 | + gs_factory: GraphStoreFactory = request.getfixturevalue(gs_factory) |
| 257 | + store = gs_factory.store( |
| 258 | + [ |
| 259 | + Document( |
| 260 | + id="a", |
| 261 | + page_content="A", |
| 262 | + metadata={ |
| 263 | + METADATA_LINKS_KEY: { |
| 264 | + Link.incoming(kind="hyperlink", tag="http://a"), |
| 265 | + Link.bidir(kind="other", tag="foo"), |
| 266 | + }, |
| 267 | + "other": "some other field", |
| 268 | + }, |
| 269 | + ) |
| 270 | + ] |
| 271 | + ) |
| 272 | + results = store.similarity_search("A") |
| 273 | + assert len(results) == 1 |
| 274 | + doc = results[0] |
| 275 | + metadata = doc.metadata |
| 276 | + assert metadata["other"] == "some other field" |
| 277 | + assert doc.id == "a" |
| 278 | + assert set(metadata[METADATA_LINKS_KEY]) == { |
| 279 | + Link.incoming(kind="hyperlink", tag="http://a"), |
| 280 | + Link.bidir(kind="other", tag="foo"), |
| 281 | + } |
0 commit comments