|
| 1 | +import logging |
| 2 | +from typing import List |
| 3 | + |
| 4 | +from astrapy.db import AstraDB as LibAstraDB |
| 5 | +import pytest |
| 6 | +from httpx import ConnectError |
| 7 | +from e2e_tests.conftest import get_required_env, get_astra_ref |
| 8 | +from llama_index import ( |
| 9 | + ServiceContext, |
| 10 | + StorageContext, |
| 11 | + VectorStoreIndex, |
| 12 | + Document, |
| 13 | +) |
| 14 | +from llama_index.embeddings import BaseEmbedding |
| 15 | +from llama_index.llms import OpenAI, LLM |
| 16 | +from llama_index.node_parser import SimpleNodeParser |
| 17 | +from llama_index.vector_stores import AstraDBVectorStore |
| 18 | + |
| 19 | + |
| 20 | +def test_basic_vector_search(environment): |
| 21 | + print("Running test_basic_vector_search") |
| 22 | + documents = [ |
| 23 | + Document(text="RAGStack is a framework to run LangChain in production") |
| 24 | + ] |
| 25 | + |
| 26 | + index = VectorStoreIndex.from_documents( |
| 27 | + documents, |
| 28 | + storage_context=environment.storage_context, |
| 29 | + service_context=environment.service_context, |
| 30 | + ) |
| 31 | + |
| 32 | + # Verify that the document is in the vector store |
| 33 | + retriever = index.as_retriever() |
| 34 | + assert len(retriever.retrieve("RAGStack")) > 0 |
| 35 | + |
| 36 | + |
| 37 | +def test_ingest_errors(environment): |
| 38 | + print("Running test_ingest_errors") |
| 39 | + |
| 40 | + empty_text = "" |
| 41 | + |
| 42 | + try: |
| 43 | + # empty text computes embeddings vector as all zeroes and this is not allowed |
| 44 | + documents = [Document(text=empty_text)] |
| 45 | + |
| 46 | + VectorStoreIndex.from_documents( |
| 47 | + documents, |
| 48 | + storage_context=environment.storage_context, |
| 49 | + service_context=environment.service_context, |
| 50 | + ) |
| 51 | + except ValueError as e: |
| 52 | + print("Error:", e) |
| 53 | + # API Exception while running bulk insertion: [{'message': "Failed to insert document with _id 'b388435404254c17b720816ee9e0ddc4': Zero vectors cannot be indexed or queried with cosine similarity"}] |
| 54 | + if ( |
| 55 | + "Zero vectors cannot be indexed or queried with cosine similarity" |
| 56 | + not in e.args[0] |
| 57 | + ): |
| 58 | + pytest.fail( |
| 59 | + f"Should have thrown ValueError with Zero vectors cannot be indexed or queried with cosine similarity but it was {e}" |
| 60 | + ) |
| 61 | + |
| 62 | + very_long_text = "RAGStack is a framework to run LangChain in production. " * 1000 |
| 63 | + |
| 64 | + # with the default set of transformations this write succeeds because LI automatically does text splitting |
| 65 | + documents = [Document(text=very_long_text)] |
| 66 | + VectorStoreIndex.from_documents( |
| 67 | + documents, |
| 68 | + storage_context=environment.storage_context, |
| 69 | + service_context=environment.service_context, |
| 70 | + ) |
| 71 | + |
| 72 | + # if we disable text splitting, this write fails because the document is too long |
| 73 | + very_long_text = "RAGStack is a framework to run LangChain in production. " * 1000 |
| 74 | + try: |
| 75 | + documents = [Document(text=very_long_text)] |
| 76 | + |
| 77 | + VectorStoreIndex.from_documents( |
| 78 | + documents, |
| 79 | + storage_context=environment.storage_context, |
| 80 | + service_context=environment.service_context_no_splitting, |
| 81 | + ) |
| 82 | + pytest.fail("Should have thrown ValueError") |
| 83 | + except ValueError as e: |
| 84 | + print("Error:", e) |
| 85 | + # API Exception while running bulk insertion: {'errors': [{'message': 'Document size limitation violated: String value length (56000) exceeds maximum allowed (16000)', 'errorCode': 'SHRED_DOC_LIMIT_VIOLATION'}]} |
| 86 | + if "SHRED_DOC_LIMIT_VIOLATION" not in e.args[0]: |
| 87 | + pytest.fail( |
| 88 | + f"Should have thrown ValueError with SHRED_DOC_LIMIT_VIOLATION but it was {e}" |
| 89 | + ) |
| 90 | + |
| 91 | + |
| 92 | +def test_wrong_connection_parameters(): |
| 93 | + # This is expected to be a valid endpoint, because we want to test an AUTHENTICATION error |
| 94 | + astra_ref = get_astra_ref() |
| 95 | + api_endpoint = astra_ref.api_endpoint |
| 96 | + |
| 97 | + try: |
| 98 | + AstraDBVectorStore( |
| 99 | + token="xxxxx", |
| 100 | + # we assume that post 1234 is not open locally |
| 101 | + api_endpoint="https://locahost:1234", |
| 102 | + collection_name="something", |
| 103 | + embedding_dimension=1536, |
| 104 | + ) |
| 105 | + pytest.fail("Should have thrown exception") |
| 106 | + except ConnectError as e: |
| 107 | + print("Error:", e) |
| 108 | + pass |
| 109 | + |
| 110 | + try: |
| 111 | + print("api_endpoint:", api_endpoint) |
| 112 | + AstraDBVectorStore( |
| 113 | + token="this-is-a-wrong-token", |
| 114 | + api_endpoint=api_endpoint, |
| 115 | + collection_name="something", |
| 116 | + embedding_dimension=1536, |
| 117 | + ) |
| 118 | + pytest.fail("Should have thrown exception") |
| 119 | + except ValueError as e: |
| 120 | + print("Error:", e) |
| 121 | + if "AUTHENTICATION ERROR" not in e.args[0]: |
| 122 | + pytest.fail( |
| 123 | + f"Should have thrown ValueError with AUTHENTICATION ERROR but it was {e}" |
| 124 | + ) |
| 125 | + |
| 126 | + |
| 127 | +def init_vector_db() -> AstraDBVectorStore: |
| 128 | + astra_ref = get_astra_ref() |
| 129 | + collection = astra_ref.collection |
| 130 | + token = astra_ref.token |
| 131 | + api_endpoint = astra_ref.api_endpoint |
| 132 | + |
| 133 | + raw_client = LibAstraDB(api_endpoint=api_endpoint, token=token) |
| 134 | + collections = raw_client.get_collections().get("status").get("collections") |
| 135 | + logging.info(f"Existing collections: {collections}") |
| 136 | + for collection_info in collections: |
| 137 | + try: |
| 138 | + logging.info(f"Deleting collection: {collection_info}") |
| 139 | + raw_client.delete_collection(collection_info) |
| 140 | + except Exception as e: |
| 141 | + logging.error(f"Error while deleting collection {collection_info}: {e}") |
| 142 | + |
| 143 | + vector_db = AstraDBVectorStore( |
| 144 | + token=token, |
| 145 | + api_endpoint=api_endpoint, |
| 146 | + collection_name=collection, |
| 147 | + embedding_dimension=3, |
| 148 | + ) |
| 149 | + |
| 150 | + return vector_db |
| 151 | + |
| 152 | + |
| 153 | +class Environment: |
| 154 | + def __init__( |
| 155 | + self, vectorstore: AstraDBVectorStore, llm: LLM, embedding: BaseEmbedding |
| 156 | + ): |
| 157 | + self.vectorstore = vectorstore |
| 158 | + self.llm = llm |
| 159 | + self.embedding = embedding |
| 160 | + self.service_context = ServiceContext.from_defaults( |
| 161 | + embed_model=self.embedding, llm=self.llm |
| 162 | + ) |
| 163 | + basic_node_parser = SimpleNodeParser.from_defaults( |
| 164 | + chunk_size=100000000, include_prev_next_rel=False, include_metadata=True |
| 165 | + ) |
| 166 | + self.service_context_no_splitting = ServiceContext.from_defaults( |
| 167 | + embed_model=self.embedding, |
| 168 | + llm=self.llm, |
| 169 | + transformations=[basic_node_parser], |
| 170 | + ) |
| 171 | + self.storage_context = StorageContext.from_defaults(vector_store=vectorstore) |
| 172 | + |
| 173 | + |
| 174 | +@pytest.fixture |
| 175 | +def environment(): |
| 176 | + embeddings_impl = init_embeddings() |
| 177 | + vector_db_impl = init_vector_db() |
| 178 | + llm_impl = init_llm() |
| 179 | + yield Environment( |
| 180 | + vectorstore=vector_db_impl, llm=llm_impl, embedding=embeddings_impl |
| 181 | + ) |
| 182 | + close_vector_db(vector_db_impl) |
| 183 | + |
| 184 | + |
| 185 | +def close_vector_db(vector_store: AstraDBVectorStore): |
| 186 | + vector_store._astra_db.delete_collection( |
| 187 | + vector_store._astra_db_collection.collection_name |
| 188 | + ) |
| 189 | + |
| 190 | + |
| 191 | +class MockEmbeddings(BaseEmbedding): |
| 192 | + def _get_query_embedding(self, query: str) -> List[float]: |
| 193 | + return self.mock_embedding(query) |
| 194 | + |
| 195 | + async def _aget_query_embedding(self, query: str) -> List[float]: |
| 196 | + return self.mock_embedding(query) |
| 197 | + |
| 198 | + def _get_text_embedding(self, text: str) -> List[float]: |
| 199 | + return self.mock_embedding(text) |
| 200 | + |
| 201 | + @staticmethod |
| 202 | + def mock_embedding(text: str): |
| 203 | + res = [len(text) / 2, len(text) / 5, len(text) / 10] |
| 204 | + logging.info("mock_embedding for " + text + " : " + str(res)) |
| 205 | + return res |
| 206 | + |
| 207 | + |
| 208 | +def init_embeddings() -> BaseEmbedding: |
| 209 | + return MockEmbeddings() |
| 210 | + |
| 211 | + |
| 212 | +def init_llm() -> LLM: |
| 213 | + openai_key = get_required_env("OPEN_AI_KEY") |
| 214 | + return OpenAI( |
| 215 | + api_key=openai_key, model="gpt-3.5-turbo-16k", streaming=False, temperature=0 |
| 216 | + ) |
0 commit comments