Skip to content

Commit 05aaea9

Browse files
Update generative-proof-of-concept-CPU-preprocessing-in-memory.py
Extend metadata for the generated text samples being logged, Add the perplexity metric and max_new_tokens.
1 parent f2ea16f commit 05aaea9

File tree

1 file changed

+4
-3
lines changed

1 file changed

+4
-3
lines changed

generative-proof-of-concept-CPU-preprocessing-in-memory.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1089,7 +1089,7 @@ def complete_text_beam(text: str,
10891089
# print(f"I ask the generator (Beam defaults - max_new_tokens: 10, temperature: 0.75, top_k: 75, top_p: 0.98, repetition_penalty: None, presence_penalty: 1.3, frequency_penalty: 1.4): {test_text_block}... It responds: '{response}'.")
10901090

10911091
trial_number = int(trial.number)
1092-
def test_text(test_prompt: str, max_new_tokens: int, sample_number: int, result: float, result_cutoff: float, trial_id: int, test_sample_number: int) -> None:
1092+
def test_text(test_prompt: str, max_new_tokens: int, sample_number: int, result: float, result_cutoff: float, trial_id: int, test_sample_number: int, result_0: float) -> None:
10931093
"""
10941094
If the result < result_cutoff, this will run a matrix of different sampling values and print out the resulting text for human subjective evaluation.
10951095
@@ -1177,7 +1177,7 @@ def test_text(test_prompt: str, max_new_tokens: int, sample_number: int, result:
11771177
repetition_penalty=perm_0['repetition_penalty'],
11781178
presence_penalty=perm_0['presence_penalty'],
11791179
frequency_penalty=perm_0['frequency_penalty'])
1180-
print(f"Trial #: {trial_id} Text Sample #: {test_sample_number} GENERATE PARAMS: temperature={perm_0['temperature']}, top_k={perm_0['top_k']}, top_p={perm_0['top_p']}, repetition_penalty={perm_0['repetition_penalty']} presence_penalty={perm_0['presence_penalty']} frequency_penalty{perm_0['frequency_penalty']} PROMPT: {test_prompt} RESPONSE: {response_0}")
1180+
print(f"Trial #: {trial_id} Text Sample #: {test_sample_number} Perplexity: {result_0} GENERATE PARAMS: {perm_0['max_new_tokens']} temperature={perm_0['temperature']}, top_k={perm_0['top_k']}, top_p={perm_0['top_p']}, repetition_penalty={perm_0['repetition_penalty']} presence_penalty={perm_0['presence_penalty']} frequency_penalty{perm_0['frequency_penalty']} PROMPT: {test_prompt} RESPONSE: {response_0}")
11811181
#
11821182
# print(f"Sample {sample_number}: I ask the generator (Beam: - max_new_tokens: 10, temperature=0.6, top_k=75, top_p=0.98, repetition_penalty=None, presence_penalty = 1.3, frequency_penalty = 1.4): {test_prompt}... It responds: '{response_3}'.")
11831183
# response_4 = complete_text_beam(text=test_prompt, max_new_tokens=max_new_tokens, temperature=0.7, top_k=75, top_p=0.98, repetition_penalty=None, presence_penalty = 1.3, frequency_penalty = 1.4)
@@ -1207,7 +1207,8 @@ def test_text(test_prompt: str, max_new_tokens: int, sample_number: int, result:
12071207
result=result,
12081208
result_cutoff=RESULT_CUTOFF,
12091209
trial_id=trial_number,
1210-
test_sample_number=counter)
1210+
test_sample_number=counter,
1211+
result_0=result)
12111212
counter += 1
12121213

12131214
# # Tokenize the text without padding first to get actual tokens

0 commit comments

Comments
 (0)