@@ -1089,7 +1089,7 @@ def complete_text_beam(text: str,
10891089 # print(f"I ask the generator (Beam defaults - max_new_tokens: 10, temperature: 0.75, top_k: 75, top_p: 0.98, repetition_penalty: None, presence_penalty: 1.3, frequency_penalty: 1.4): {test_text_block}... It responds: '{response}'.")
10901090
10911091 trial_number = int (trial .number )
1092- def test_text (test_prompt : str , max_new_tokens : int , sample_number : int , result : float , result_cutoff : float , trial_id : int , test_sample_number : int ) -> None :
1092+ def test_text (test_prompt : str , max_new_tokens : int , sample_number : int , result : float , result_cutoff : float , trial_id : int , test_sample_number : int , result_0 : float ) -> None :
10931093 """
10941094 If the result < result_cutoff, this will run a matrix of different sampling values and print out the resulting text for human subjective evaluation.
10951095
@@ -1177,7 +1177,7 @@ def test_text(test_prompt: str, max_new_tokens: int, sample_number: int, result:
11771177 repetition_penalty = perm_0 ['repetition_penalty' ],
11781178 presence_penalty = perm_0 ['presence_penalty' ],
11791179 frequency_penalty = perm_0 ['frequency_penalty' ])
1180- print (f"Trial #: { trial_id } Text Sample #: { test_sample_number } GENERATE PARAMS: temperature={ perm_0 ['temperature' ]} , top_k={ perm_0 ['top_k' ]} , top_p={ perm_0 ['top_p' ]} , repetition_penalty={ perm_0 ['repetition_penalty' ]} presence_penalty={ perm_0 ['presence_penalty' ]} frequency_penalty{ perm_0 ['frequency_penalty' ]} PROMPT: { test_prompt } RESPONSE: { response_0 } " )
1180+ print (f"Trial #: { trial_id } Text Sample #: { test_sample_number } Perplexity: { result_0 } GENERATE PARAMS: { perm_0 [ 'max_new_tokens' ] } temperature={ perm_0 ['temperature' ]} , top_k={ perm_0 ['top_k' ]} , top_p={ perm_0 ['top_p' ]} , repetition_penalty={ perm_0 ['repetition_penalty' ]} presence_penalty={ perm_0 ['presence_penalty' ]} frequency_penalty{ perm_0 ['frequency_penalty' ]} PROMPT: { test_prompt } RESPONSE: { response_0 } " )
11811181 #
11821182 # print(f"Sample {sample_number}: I ask the generator (Beam: - max_new_tokens: 10, temperature=0.6, top_k=75, top_p=0.98, repetition_penalty=None, presence_penalty = 1.3, frequency_penalty = 1.4): {test_prompt}... It responds: '{response_3}'.")
11831183 # response_4 = complete_text_beam(text=test_prompt, max_new_tokens=max_new_tokens, temperature=0.7, top_k=75, top_p=0.98, repetition_penalty=None, presence_penalty = 1.3, frequency_penalty = 1.4)
@@ -1207,7 +1207,8 @@ def test_text(test_prompt: str, max_new_tokens: int, sample_number: int, result:
12071207 result = result ,
12081208 result_cutoff = RESULT_CUTOFF ,
12091209 trial_id = trial_number ,
1210- test_sample_number = counter )
1210+ test_sample_number = counter ,
1211+ result_0 = result )
12111212 counter += 1
12121213
12131214 # # Tokenize the text without padding first to get actual tokens
0 commit comments