@@ -258,6 +258,12 @@ class SimpleCerebrosRandomSearch(DenseAutoMlStructuralComponent,
258258 will be multiplied by p_lateral_connection where x is the number
259259 of subsequent connections after the first
260260 num_lateral_connection_tries_per_unit: int: defaults to 1,
261+ self.chart_network_graph: bool: default: False,
262+ Whether or not Cerebros will create visualizations of the neural
263+ network graphs. When recursively running Cerebros for hyperparameter
264+ tuning, we recommned the default of False. When running a single, easily repeatable
265+ training task that will not run for long, or when debugging a failed run with an error
266+ in the network graph, it may provide useful information.
261267 *args,
262268 **kwargs
263269
@@ -308,6 +314,7 @@ def __init__(
308314 meta_trial_number = 0 ,
309315 base_models = ['' ],
310316 train_data_dtype = tf .float32 ,
317+ chart_network_graph : bool = False ,
311318 * args ,
312319 ** kwargs ):
313320
@@ -367,6 +374,7 @@ def __init__(
367374 self .base_models = base_models
368375 self .best_model_path = ""
369376 self .train_data_dtype = train_data_dtype
377+ self .chart_network_graph = chart_network_graph
370378 # Can be varied throughout the serch session;
371379 # must be controlled internally
372380 DenseAutoMlStructuralComponent .__init__ (
@@ -475,7 +483,8 @@ def run_moity_permutations(self, spec, subtrial_number, lock):
475483 nnf .compile_neural_network ()
476484 neural_network = nnf .materialized_neural_network
477485 print (nnf .materialized_neural_network .summary ())
478- nnf .get_graph ()
486+ if self .chart_network_graph :
487+ nnf .get_graph ()
479488
480489 history = neural_network .fit (x = self .training_data ,
481490 y = self .labels ,
0 commit comments