@@ -103,11 +103,14 @@ def hash_based_split(df, # Pandas dataframe
103103
104104# white = pd.read_csv('wine_data.csv')
105105
106+
106107raw_data = pd .read_csv ('ames.csv' )
107108needed_cols = [
108- col for col in raw_data .columns if raw_data [col ].dtype != 'object' ]
109+ col for col in raw_data .columns
110+ if raw_data [col ].dtype != 'object'
111+ and col != LABEL_COLUMN ]
109112data_numeric = raw_data [needed_cols ].fillna (0 ).astype (float )
110- label = raw_data .pop ('price' )
113+ label = raw_data .pop (LABEL_COLUMN )
111114
112115
113116train_df , train_labels_pd , val_df , val_labels_pd = \
@@ -147,19 +150,20 @@ def hash_based_split(df, # Pandas dataframe
147150# Params for a training function (Approximately the oprma
148151# discovered in a bayesian tuning study done on Katib)
149152
153+
150154meta_trial_number = 0 # In distributed training set this to a random number
151- activation = "gelu"
152- predecessor_level_connection_affinity_factor_first = 19.613
153- predecessor_level_connection_affinity_factor_main = 0.5518
154- max_consecutive_lateral_connections = 34
155- p_lateral_connection = 0.36014
156- num_lateral_connection_tries_per_unit = 11
157- learning_rate = 0.095
158- epochs = 145
159- batch_size = 634
160- maximum_levels = 5
161- maximum_units_per_level = 5
162- maximum_neurons_per_unit = 25
155+ activation = 'swish'
156+ predecessor_level_connection_affinity_factor_first = 0.506486683067576
157+ predecessor_level_connection_affinity_factor_main = 1.6466748663373876
158+ max_consecutive_lateral_connections = 35
159+ p_lateral_connection = 3.703218275217572
160+ num_lateral_connection_tries_per_unit = 12
161+ learning_rate = 0.02804912925494706
162+ epochs = 130
163+ batch_size = 78
164+ maximum_levels = 4
165+ maximum_units_per_level = 3
166+ maximum_neurons_per_unit = 3
163167
164168
165169cerebros = \
@@ -172,11 +176,11 @@ def hash_based_split(df, # Pandas dataframe
172176 validation_split = 0.0 ,
173177 direction = 'minimize' ,
174178 metric_to_rank_by = 'val_root_mean_squared_error' ,
175- minimum_levels = 1 ,
179+ minimum_levels = 4 ,
176180 maximum_levels = maximum_levels ,
177- minimum_units_per_level = 1 ,
181+ minimum_units_per_level = 2 ,
178182 maximum_units_per_level = maximum_units_per_level ,
179- minimum_neurons_per_unit = 1 ,
183+ minimum_neurons_per_unit = 3 ,
180184 maximum_neurons_per_unit = maximum_neurons_per_unit ,
181185 validation_data = (val_x , val_labels ),
182186 activation = activation ,
0 commit comments