Skip to content

Commit 5cd1719

Browse files
Update regression-example-ames-no-preproc-val-set.py
Move correction to data leakage issue and new optimum hyperparameters to regression-example-ames-no-preproc-val-set.py to see if the same params work here as well. They may need a separate HP optimization study for this script.
1 parent 4a98085 commit 5cd1719

File tree

1 file changed

+21
-17
lines changed

1 file changed

+21
-17
lines changed

regression-example-ames-no-preproc-val-set.py

Lines changed: 21 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -103,11 +103,14 @@ def hash_based_split(df, # Pandas dataframe
103103

104104
# white = pd.read_csv('wine_data.csv')
105105

106+
106107
raw_data = pd.read_csv('ames.csv')
107108
needed_cols = [
108-
col for col in raw_data.columns if raw_data[col].dtype != 'object']
109+
col for col in raw_data.columns
110+
if raw_data[col].dtype != 'object'
111+
and col != LABEL_COLUMN]
109112
data_numeric = raw_data[needed_cols].fillna(0).astype(float)
110-
label = raw_data.pop('price')
113+
label = raw_data.pop(LABEL_COLUMN)
111114

112115

113116
train_df, train_labels_pd, val_df, val_labels_pd =\
@@ -147,19 +150,20 @@ def hash_based_split(df, # Pandas dataframe
147150
# Params for a training function (Approximately the oprma
148151
# discovered in a bayesian tuning study done on Katib)
149152

153+
150154
meta_trial_number = 0 # In distributed training set this to a random number
151-
activation = "gelu"
152-
predecessor_level_connection_affinity_factor_first = 19.613
153-
predecessor_level_connection_affinity_factor_main = 0.5518
154-
max_consecutive_lateral_connections = 34
155-
p_lateral_connection = 0.36014
156-
num_lateral_connection_tries_per_unit = 11
157-
learning_rate = 0.095
158-
epochs = 145
159-
batch_size = 634
160-
maximum_levels = 5
161-
maximum_units_per_level = 5
162-
maximum_neurons_per_unit = 25
155+
activation = 'swish'
156+
predecessor_level_connection_affinity_factor_first = 0.506486683067576
157+
predecessor_level_connection_affinity_factor_main = 1.6466748663373876
158+
max_consecutive_lateral_connections = 35
159+
p_lateral_connection = 3.703218275217572
160+
num_lateral_connection_tries_per_unit = 12
161+
learning_rate = 0.02804912925494706
162+
epochs = 130
163+
batch_size = 78
164+
maximum_levels = 4
165+
maximum_units_per_level = 3
166+
maximum_neurons_per_unit = 3
163167

164168

165169
cerebros =\
@@ -172,11 +176,11 @@ def hash_based_split(df, # Pandas dataframe
172176
validation_split=0.0,
173177
direction='minimize',
174178
metric_to_rank_by='val_root_mean_squared_error',
175-
minimum_levels=1,
179+
minimum_levels=4,
176180
maximum_levels=maximum_levels,
177-
minimum_units_per_level=1,
181+
minimum_units_per_level=2,
178182
maximum_units_per_level=maximum_units_per_level,
179-
minimum_neurons_per_unit=1,
183+
minimum_neurons_per_unit=3,
180184
maximum_neurons_per_unit=maximum_neurons_per_unit,
181185
validation_data=(val_x, val_labels),
182186
activation=activation,

0 commit comments

Comments
 (0)