44from datetime import datetime
55from subprocess import run
66
7- MLFLOW_PORT = 5000
7+ MLFLOW_PORT = 7777
88
99answer = run (f"mlflow server --host 127.0.0.1 --port { MLFLOW_PORT } &" ,
1010 shell = True ,
1919
2020mlflow .set_tracking_uri (uri = f"http://127.0.0.1:{ MLFLOW_PORT } " )
2121
22- mlflow .set_experiment (f"single-worker-1st-pass -tuning-{ EXPERIMENT_ITERATION } -a" )
22+ mlflow .set_experiment (f"single-worker-femto-scale -tuning-200-samples -{ EXPERIMENT_ITERATION } -a" )
2323
2424
2525
@@ -28,11 +28,11 @@ def objective(trial: optuna.Trial) -> float:
2828 Objective function for Optuna hyperparameter optimization
2929 Returns the validation loss or metric to minimize
3030 """
31-
31+
3232 import tensorflow as tf
33- import tensorflow_text
34- from keras_nlp .models import GPT2Tokenizer , GPT2Preprocessor , GPT2Backbone
35- from keras_nlp .layers import PositionEmbedding
33+ # import tensorflow_text
34+ # from keras_nlp.models import GPT2Tokenizer, GPT2Preprocessor, GPT2Backbone
35+ # from keras_nlp.layers import PositionEmbedding
3636 from transformers import AutoTokenizer
3737 from sklearn .model_selection import train_test_split
3838 from sklearn .utils import shuffle
@@ -59,7 +59,7 @@ def objective(trial: optuna.Trial) -> float:
5959 # Number of text samples to create: # Number of text samples (of approximately max_seq_len) to create
6060 # Raises RAM in a linear fashion
6161
62- SAMPLES_TO_CREATE = 10
62+ SAMPLES_TO_CREATE = 200
6363
6464 # How many tokens to provide before expecting the next token to be predicted.
6565 # Half this = double RAM (inversely proportional to RAM requirement)
@@ -93,19 +93,19 @@ def objective(trial: optuna.Trial) -> float:
9393
9494 predecessor_level_connection_affinity_factor_main = trial .suggest_float ('predecessor_level_connection_affinity_factor_main' , 0.1 , 40.0 )
9595
96- max_consecutive_lateral_connections = trial .suggest_int ('max_consecutive_lateral_connections' , 2 , 10 )
96+ max_consecutive_lateral_connections = trial .suggest_int ('max_consecutive_lateral_connections' , 6 , 8 )
9797
98- p_lateral_connection = trial .suggest_float ('p_lateral_connection' , 0.01 , 1.00 )
98+ p_lateral_connection = trial .suggest_float ('p_lateral_connection' , 0.04 , 0.45 )
9999
100- num_lateral_connection_tries_per_unit = trial .suggest_int ('num_lateral_connection_tries_per_unit' , 1 , 40 )
100+ num_lateral_connection_tries_per_unit = trial .suggest_int ('num_lateral_connection_tries_per_unit' , 10 , 35 )
101101
102102 learning_rate = trial .suggest_float ('learning_rate' , 10 ** - 4 , 0.05 , log = True )
103103
104- epochs = trial .suggest_int ('epochs' , 10 , 50 )
104+ epochs = trial .suggest_int ('epochs' , 23 , 65 )
105105
106106 batch_size = trial .suggest_int ('batch_size' , 5 , 15 )
107107
108- gradient_accumulation_steps = trial .suggest_int ('gradient_accumulation_steps' , 1 , 2 )
108+ gradient_accumulation_steps = trial .suggest_int ('gradient_accumulation_steps' , 1 , 3 )
109109
110110 # Level constraints - ensure max >= min by setting min of max to value of min
111111 minimum_levels = trial .suggest_int ('minimum_levels' , 1 , 3 )
@@ -971,5 +971,3 @@ def main():
971971
972972if __name__ == '__main__' :
973973 main ()
974-
975-
0 commit comments