@@ -1355,8 +1355,10 @@ def __next__(self):
13551355 self ._expand_next_batch ()
13561356
13571357 # Pop and return one sample
1358- input_sample = [self .data .pop (0 )] # Nested as per model input spec
1359- label_sample = [self .labels .pop (0 )] # Nested as per model output spec
1358+ # input_sample = [self.data.pop(0)] # Nested as per model input spec
1359+ # label_sample = [self.labels.pop(0)] # Nested as per model output spec
1360+ input_sample = [self .data .pop (0 )]
1361+ label_sample = [self .labels .pop (0 )]
13601362
13611363 return (input_sample , label_sample )
13621364
@@ -1368,8 +1370,10 @@ def create_dataset(raw_text_samples, tokenizer, sample_expansion_batch_size=10)
13681370 dataset = tf .data .Dataset .from_generator (
13691371 lambda : generator ,
13701372 output_signature = (
1371- tf .TensorSpec (shape = (1 , MAX_SEQ_LENGTH ), dtype = tf .int32 ), # Nested input
1372- tf .TensorSpec (shape = (1 , VOCABULARY_SIZE ), dtype = tf .float32 ) # Nested one-hot label
1373+ tf .TensorSpec (shape = (MAX_SEQ_LENGTH ,), dtype = tf .float32 ),
1374+ tf .TensorSpec (shape = (VOCABULARY_SIZE ,), dtype = tf .float32 )
1375+ # tf.TensorSpec(shape=(1, MAX_SEQ_LENGTH), dtype=tf.int32), # Nested input
1376+ # tf.TensorSpec(shape=(1, VOCABULARY_SIZE), dtype=tf.float32) # Nested one-hot label
13731377 )
13741378 )
13751379 # Set dataset to allow multiple epochs:
0 commit comments