1313print (answer .stdout )
1414
1515
16- EXPERIMENT_ITERATION = "0001 "
16+ EXPERIMENT_ITERATION = "0003 "
1717EXPERIMENT_NAME = "single-worker-1st-pass"
1818DATA_SET_NAME = "WEB-Bible-Genesis-40-context-681-SPL"
1919
@@ -63,7 +63,7 @@ def objective(trial: optuna.Trial) -> float:
6363 # Number of text samples to create: # Number of text samples (of approximately max_seq_len) to create
6464 # Raises RAM in a linear fashion
6565
66- SAMPLES_TO_CREATE = 2000
66+ SAMPLES_TO_CREATE = 681
6767
6868 # How many tokens to provide before expecting the next token to be predicted.
6969 # Half this = double RAM (inversely proportional to RAM requirement)
@@ -105,7 +105,7 @@ def objective(trial: optuna.Trial) -> float:
105105
106106 predecessor_level_connection_affinity_factor_first = trial .suggest_float ('predecessor_level_connection_affinity_factor_first' , 10.0 , 30.0 )
107107
108- predecessor_level_connection_affinity_factor_main = trial .suggest_float ('predecessor_level_connection_affinity_factor_main' , 16 .0 , 25.0 )
108+ predecessor_level_connection_affinity_factor_main = trial .suggest_float ('predecessor_level_connection_affinity_factor_main' , 10 .0 , 25.0 )
109109
110110 max_consecutive_lateral_connections = trial .suggest_int ('max_consecutive_lateral_connections' , 2 , 7 )
111111
@@ -117,9 +117,9 @@ def objective(trial: optuna.Trial) -> float:
117117
118118 epochs = trial .suggest_int ('epochs' , 10 , 85 )
119119
120- batch_size = 5 # trial.suggest_int('batch_size', 5, 10)
120+ batch_size = 10 # trial.suggest_int('batch_size', 5, 10)
121121
122- gradient_accumulation_steps = trial .suggest_int ('gradient_accumulation_steps' , 1 , 15 )
122+ gradient_accumulation_steps = trial .suggest_int ('gradient_accumulation_steps' , 1 , 6 )
123123
124124 # Level constraints - ensure max >= min by setting min of max to value of min
125125 minimum_levels = trial .suggest_int ('minimum_levels' , 1 , 3 )
0 commit comments